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Abstract

Parallel workstations, each comprising tens of processors based on shared memory, promise
cost-e�ective scalable multiprocessing. This paper explores the coupling of such small- to
medium-scale shared memory multiprocessors through software over a local area network to
synthesize larger shared memory systems. We call these systems Distributed Shared-memory
MultiProcessors (DSMPs).

This paper introduces the design of a shared memory system that uses multiple granularities
of sharing, called MGS, and presents a prototype implementation of MGS on the MIT Alewife
multiprocessor. Multigrain shared memory enables the collaboration of hardware and software
shared memory, thus synthesizing a single transparent shared memory address space across a
cluster of multiprocessors. The system leverages the e�cient support for �ne-grain cache-line
sharing within multiprocessor nodes as often as possible, and resorts to coarse-grain page-level
sharing across nodes only when absolutely necessary.

Using our prototype implementation of MGS, an in-depth study of several shared memory
applications is conducted to understand the behavior of DSMPs. Our study is the �rst to
comprehensively explore the DSMP design space, and to compare the performance of DSMPs
against all-software and all-hardware DSMs on a single experimental platform. Keeping the total
number of processors �xed, we show that applications execute up to 85% faster on a DSMP
as compared to an all-software DSM. We also show that all-hardware DSMs hold a signi�cant
performance advantage over DSMPs on challenging applications, between 159% and 1014%.
However, program transformations to improve data locality for these applications allow DSMPs
to almost match the performance of an all-hardware multiprocessor of the same size.

�This research was funded in part by DARPA contract N00014-94-1-0985 and in part by NSF Experimental
Systems grant MIP-9504399. Copyright 2000 by the Association for Computing Machinery, Inc. Permission to make
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citation on the �rst page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists,
requires prior speci�c permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212)
869-0481, or permissions@acm.org.
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1 Introduction

Large-scale shared memory multiprocessors have received signi�cant attention within the computer
architecture community over the past decade, in large part due to two factors. First, the shared
memory programming model is desirable because it relieves the programmer from the burden
of explicitly orchestrating communication, as is required by a message passing communication
model [1]. Second, large-scale shared memory machines have the potential for extremely good
cost-performance. They are constructed using nodes that rely only on modest technology. Unlike
traditional supercomputers, large-scale shared memory machines use commodity microprocessors,
and achieve high performance by exploiting medium- to coarse-grain parallelism across a large
number of nodes.

While the promise for cost-performance has contributed to the popularity of large-scale shared
memory machines, this promise has thus far gone unful�lled due to the high cost of providing
e�cient communication mechanisms at large scales. Traditionally, large-scale shared memory ma-
chines support e�cient communication through aggressive architectural support. An example is the
hardware cache-coherent distributed shared memory (DSM) architecture. Hardware DSMs are built
using custom communication interfaces, high performance VLSI interconnect, and special-purpose
hardware support for shared memory. These aggressive architectural features provide extremely ef-
�cient communication between nodes through tightly coupled hardware interfaces. Although such
e�cient communication is crucial for scalable performance on communication-intensive applica-
tions, the investment in hardware mechanisms comes at a cost. Tight coupling between nodes is
di�cult to maintain in a cost-e�ective manner as the number of nodes becomes large. Fundamental
obstacles prevent large tightly-coupled systems from being cost e�ective. The cost of power distri-
bution, clock distribution, cooling, and special packaging considerations in tightly coupled systems
do not scale linearly with size. Perhaps most important, the large-scale nature of these machines
prevents them from capitalizing on the economy of cost that higher volume small-scale machines
enjoy.

In response to the high design cost of large-scale hardware DSMs, many researchers have pro-
posed building large-scale shared memory systems using commodity uniprocessor workstations as
the compute node building block. In these lower cost systems, the tightly coupled communications
interfaces found in hardware DSMs are replaced by commodity interfaces. Furthermore, commod-
ity networks such as those found in the local area environment are used to connect the workstation
nodes, and the shared memory communication abstraction is supported purely in software. Such
software DSM architectures are cost e�ective because all the components are high volume com-
modity items and because specialized tightly-coupled packaging is not required. Unfortunately,
software DSMs are unable to provide high performance across a wide range of applications [2].
While communication interfaces for commodity workstations have made impressive improvements,
the best reported inter-workstation latency numbers are still an order of magnitude higher than on
machines that have tightly-coupled special-purpose interfaces [3]. The high cost of communication
on commodity systems prevents them from supporting applications with intensive communication
requirements.

Traditional architectures for large-scale shared memory machines have not satisfactorily ad-
dressed the tension between providing e�cient communication mechanisms for high performance
and leveraging commodity components for low cost. In this paper, we explore a new approach to
building large-scale shared memory machines that leverages small- to medium-scale shared mem-
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ory multiprocessors as the building block for larger systems. Small-scale (2{16 processor) and
medium-scale (17{128 processor) shared memory machines are commodity components. A familiar
example is the bus-based symmetric multiprocessor. Another example is the small- to medium-scale
distributed-memory multiprocessor. The latter architecturally resembles large-scale (greater than
128 processor) tightly-coupled machines, but is targeted for smaller systems. Since both symmetric
multiprocessors and small- to medium-scale distributed-memory multiprocessors are relevant to our
work, we will refer to both of them using the single term, SMP.1

The SMP is an attractive building block for large-scale multiprocessors for two reasons. First,
SMPs provide e�cient hardware support for shared memory. A larger system that can leverage this
e�cient hardware support has the potential for higher performance than a network of conventional
uniprocessor workstations in which shared memory is implemented purely in software. And second,
the e�cient shared memory mechanisms provided by SMPs do not incur exorbitant costs because
the tight coupling required is only provided across a small number of processors. Unlike large-
scale hardware DSMs, SMPs can be cost-e�ective as evidenced by the commercial success of the
bus-based symmetric multiprocessor.

We call a large-scale system built from a collection of SMPs a Distributed Shared memory

MultiProcessor (DSMP). DSMPs are constructed by extending the hardware-supported shared
memory in each SMP using software DSM techniques to form a single shared memory layer across
multiple SMP nodes. Such hybrid hardware-software systems support shared memory using two
granularities, hence the nameMultigrain Shared Memory. Cache-coherent shared memory hardware
provides a small cache-line sharing grain between processors colocated on the same SMP. Page-
based software DSM provides a larger page sharing grain between processors in separate SMPs.

Recently, several DSMP architectures have been constructed and studied [6, 7, 8, 9, 4]. This
paper builds upon the work in [4] and makes the following novel contributions:

1. We present a fully functional design of a multigrain shared memory system, called MGS, and
provide a prototype implementation of MGS on the Alewife multiprocessor.

2. We de�ne two performance metrics, the breakup penalty and the multigrain potential, that
characterize application performance on DSMPs.

3. We provide a performance evaluation of several shared memory programs on the MGS pro-
totype. While other performance evaluations of DSMP systems have been conducted (see
Section 6), our study is the �rst to explore the entire spectrum of DSMP architectures and
to provide a consistent comparison of these architectures against traditional all-software and
all-hardware DSMs on a single experimental platform.

4. We quantify the impact of program transformations for data locality to more e�ectively
leverage the clustered nature of DSMPs.

1Traditionally, only symmetric multiprocessors have been called SMPs. In [4], which describes the original version
of this work, we introduced the terminology SSMP (for Scalable Shared memory MultiProcessor) as a general term
to describe both bus-based and switched-interconnect architectures. However, in recent SMP machines, the trend
has been to replace the shared bus with a switched interconnect [5] thus blurring the distinction between traditional
SMPs and distributed-memory machines. Since manufacturers have called these new systems SMPs as well (thus
making our original terminology a misnomer), we adopt the familiar SMP terminology for both bus-based and
switched-interconnect architectures throughout the rest of this paper.
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The rest of this paper is organized as follows. Section 2 describes the DSMP architecture and
multigrain shared memory, and presents our performance metrics for DSMPs. Section 3 presents the
MGS design, and section 4 discusses our prototype implementation of MGS on Alewife. Section 5
presents the experimental results, and Section 6 discusses related work. Finally, Section 7 presents
our conclusions.

2 Multigrain Shared Memory

In this section, we describe a DSM architecture that supports shared memory in a multigrain
fashion, called a DSMP. We also describe what we call DSMP families, and present a performance
framework that allows us to reason about the performance of applications on DSMPs based on the
notion of DSMP families.

2.1 DSMPs

Traditional all-hardware and all-software DSMs implement shared memory in a monolithic fashion.
All-hardware systems support shared memory entirely in hardware using special-purpose interfaces
leading to high-performance at the expense of high cost. All-software systems support shared
memory entirely in software using commodity interfaces leading to low-cost at the expense of poor
performance on communication-intensive applications. Due to their monolithic nature, these tradi-
tional architectures are positioned at two extremes across a wide spectrum of cost and performance.
Unfortunately, the ability to trade o� cost for performance along this spectrum does not currently
exist for large-scale shared memory machines.

We propose an \intermediate architecture" between all-hardware and all-software DSMs, called
Distributed Shared memory MultiProcessors (DSMPs). DSMPs provide some tight coupling, but
not across the entire machine. \Neighborhoods" of tight coupling are formed using cache-coherent
shared memory within small- to medium-scale multiprocessor nodes. Shared memory between
cache-coherent nodes is supported via page-based software DSM techniques. Therefore, a single
transparent shared memory layer is synthesized through the cooperation of both �ne-grain and
coarse-grain shared memory mechanisms, hence the name multigrain shared memory.

Figure 1 shows the major components in a DSMP. A DSMP is a distributed shared memory
machine in which each DSM node is itself a multiprocessor. These nodes are small- to medium-scale
cache-coherent shared memory machines. We envision that each node will either be a bus-based
symmetric multiprocessor (such as the SGI Challenge), or a small- to medium-scale distributed-
memory (NUMA) multiprocessor (such as the SGI Origin [10] in a small-scale con�guration).
Throughout this paper, we will refer to both types of node architectures using the same termi-
nology, SMP.

As Figure 1 shows, DSMPs have two types of networks that form the communication substrate:
an internal network and an external network. The internal network provides interconnection be-
tween processors within each SMP. In the case that the SMP is a symmetric multiprocessor, this
network is a bus. In the case that the SMP is a NUMA multiprocessor, it may be a switched
point-to-point network. The external network connects the individual SMPs and consists of a
high-performance local area network (LAN), such as ATM or switched Ethernet.

In addition to a hierarchy of networks, DSMPs also provide shared memory support in a hier-
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Figure 1: A Distributed Shared memory MultiProcessor (DSMP).

archical fashion. Each SMP provides special-purpose hardware for cache-coherent shared memory.
This may take the form of snoopy-based cache coherence in the case of bus-based machines, or
directory-based cache coherence in the case of NUMA multiprocessors. Between SMPs, shared
memory is supported using page-based software shared memory.

DSMPs have the potential to achieve both high performance and low cost. The existence of
hardware support allows �ne-grain sharing to be supported e�ciently inside a multiprocessor node.
Although only coarse-grain sharing can be supported by the software shared memory between
nodes, multigrain systems still o�er higher performance on �ne-grain applications than software
DSMs since some �ne-grain mechanisms are provided. In addition, multigrain systems are also
much more cost-e�ective than hardware DSMs. Even though they require hardware support for
shared memory, multigrain systems incorporate hardware support only on a small- or medium-scale.

2.2 DSMP Families

A key parameter that describes any parallel machine is the system size, or the number of processing
elements in the system, P . DSMPs can also be characterized in this fashion; however, another key
parameter in the case of DSMPs is the SMP node size, C. Therefore, the two parameters, P and
C, identify speci�c DSMP con�gurations.

Many DSMP con�gurations are similar; in particular, we say that all con�gurations with the
same P parameter belong to the same DSMP family. As illustrated in Figure 2, a family of DSMPs
is de�ned by �xing the total number of processing elements, P , and varying SMP node size.2 DSMPs
in the same family di�er only in the way processors are clustered. The clustering boundary, i.e.
the boundary that divides processors on the same SMP from those that are on remote SMPS,
determines where hardware-supported shared memory meets software-supported shared memory.
Therefore, by varying SMP node size, we in e�ect vary the mix of �ne-grain and coarse-grain support

2In this paper, we only consider SMP node sizes, C, that divide P evenly. Otherwise, the DSMP will contain
SMPs of varying sizes, in which case a single SMP node size parameter cannot specify the sizes of all SMPs in the
system.
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Figure 2: A family of DSMPs is de�ned by �xing the total processing and memory resources, and
varying the SMP node size. The two parameters, P and C, denote a DSMP with P total processors,
and C processors per SMP node.

for sharing between processors. DSMPs with smaller SMP nodes rely more on software-supported
shared memory and provide more coarse-grain (page granularity) sharing support. Conversely,
DSMPs with larger SMP nodes rely more on hardware-supported shared memory and provide
more �ne-grain (cache-line granularity) sharing support. Furthermore, monolithic shared memory
machines are degenerate con�gurations: all-software DSMs have C = 1 (e.g. P; 1), and all-hardware
DSMs have C = P (e.g. P; P ).

The most important aspect of the P;C parameters is that they point to the existence of a
\knob," as depicted in Figure 2. This knob is not only an SMP node size knob and a sharing
granularity knob, but it also serves as a knob for tuning cost against performance.

2.3 DSMP Performance Framework

A performance framework that characterizes application performance on DSMPs can be de�ned
based on the notion of DSMP families and the node size knob. Given a DSMP with a �xed total
machine size P , we measure an application's performance on the DSMP as the SMP node size C is
varied from 1 to P . This set of measurements constitutes the application's performance pro�le. The
performance pro�le tells us how an application responds to a change in the mixture of hardware
and software in the implementation of shared memory. It re
ects the degree of �ne-grain hardware
mechanisms needed relative to coarse-grain software mechanisms for the application to achieve a
certain level of performance. Furthermore, since the endpoints of the performance pro�le, C = 1
and C = P , correspond to the all-software and all-hardware DSMs, respectively, the performance
pro�le also compares DSMP performance to the performance achieved on monolithic (conventional)
shared memory machines.

6



E
xe

cu
tio

n 
T

im
e

Node Size
1 2 4 PP/2

Multigrain
Potential

Breakup
Penalty

Figure 3: A hypothetical application
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Figure 4: A hypothetical application an-
alyzed using the performance framework.
This application is well-suited for DSMPs.

Figure 3 shows the performance pro�le of a hypothetical application. Execution time is plotted
against the SMP node size parameter, C, in powers of 2 for a total system size, P . We de�ne two
quantitative metrics that identify the most important features on the performance pro�le. These
metrics have been labeled in Figure 3, and are:

Breakup Penalty. The execution time increase between the P SMP node size and the P

2
SMP

node size is called the \breakup penalty." The breakup penalty measures the minimum
performance penalty incurred by breaking a tightly-coupled (all-hardware shared memory)
machine into a clustered machine.

Multigrain Potential. The di�erence in execution time between an SMP node size of 1 and an
SMP node size of P

2
is called the \multigrain potential." The multigrain potential measures

the performance bene�t derived by capturing �ne-grain sharing within SMP nodes.

Our performance framework tells us that the hypothetical application in Figure 3 is not well-
suited for DSMPs. First, the application's performance pro�le has a large breakup penalty. This
indicates that the application will perform poorly on the DSMP as compared to an all-hardware
cache-coherent DSM. Second, the multigrain potential is small indicating that very little bene�t is
derived from the hardware-supported shared memory provided within SMP nodes; therefore, this
application will not achieve much higher performance on a DSMP as compared to an all-software
DSM.

In contrast, Figure 4 shows the analysis of another hypothetical application, again using our
performance framework. The performance pro�le presented in Figure 4 displays a very small
breakup penalty. This application will perform almost as well on a DSMP as it will on an all-
hardware system because there is very little loss in performance due to introducing software in the
shared memory implementation. The performance pro�le has a large multigrain potential indicating
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Figure 5: Distribution of a page of data across three SMPs in the MGS system. Only the processors
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large bene�ts derived from capturing �ne-grain sharing within SMP nodes. The implication for the
application depicted in Figure 4 is that it will perform well on DSMPs.

Notice that while the breakup penalty and multigrain potential quantify an application's be-
havior on a DSMP, the values for the two metrics are speci�c to the machine on which they were
measured. If a machine-independent characterization is desired, it may be necessary to acquire
measurements for the breakup penalty and multigrain potential on multiple platforms.

3 MGS System Design

This section discusses the design of the MGS system, including several details about the protocol
that implements multigrain shared memory. In Section 3.1, we give an overview by describing how
data replication occurs in the system. Section 3.2 then discusses the software DSM protocol in
greater detail, and Section 3.3 brie
y describes the software state machines that implement the
protocol. Our discussion defers platform-speci�c implementation issues of the system to Section 4.

3.1 System Overview

MGS supports replication of data at both page and cache-line granularities. Between SMPs, coher-
ence actions occur at the granularity of a page. Once a page is resident in the memory of an SMP,
processors within the SMP can map the page and further replicate the data at cache-line grain via
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hardware cache coherence.

Every virtual page in the MGS system has a unique home that contains the physical home copy.
The location of the home is based on the virtual address and remains �xed for all time. SMPs
other than the home which desire access to the page can replicate the page. Replicated pages can
carry either read-only or read-write privilege. Once an SMP has a physical local copy, processors
in the SMP can gain access to the data by �rst creating mappings for the page. Read pages can be
mapped in read-only mode, while read-write pages can be mapped in either read-only or read-write
mode. Once mapped, accesses can be made to the page, and replication of the data in the page
occurs via hardware cache coherence.

Figure 5 illustrates how data from a single page gets distributed to SMPs and processors. SMP0
contains the physical home copy which is itself in read mode. A single processor in SMP0 has a
read-only mapping and has read some of the data. SMP1 and SMP2 have read-only and read-write
physical local copies, respectively. Since SMP1 has a read-only copy, its processors can only map
it in read-only mode. Processors in SMP2, however, can map their physical local copy in either
mode. One of the processors has a read-write mapping, while another has a read-only mapping.

3.2 MGS Software DSM

At the heart of the MGS system is the page-based software DSM protocol that provides shared
memory between SMP nodes. The MGS software DSM protocol resembles Munin [11]: it is release
consistent,3 invalidation-based, and supports multiple writers. Like Munin, MGS uses the delayed
update queue (DUQ) structure to track dirty pages and to propagate their changes back to the
home location at release time. Also like Munin, MGS supports multiple writers by \twinning" all
pages with read-write privilege, and computing di�s between the page and its twin at release time.
Only portions of the page that have changed are propagated back to the home copy. Finally, the
consistency in MGS is eager. At a release point, invalidations are performed immediately, and the
home copy becomes consistent with respect to all processors and SMPs after the release completes.
(An exception to eager consistency occurs for pages under the single-writer optimization, described
in Section 3.2.3).

In addition to the basic Munin protocol, the MGS software DSM layer includes several extensions
to adapt the protocol for SMP nodes: a per-node page table and TLB directory, separate per-
processor DUQs, a single-writer optimization, and a page cleaning mechanism.

3.2.1 Page Table and TLB Directory

Each node in an MGS system maintains a page table and a TLB directory in software. The page
table records the virtual-to-physical frame mapping and mapping privilege, either read-only or
read-write, for every page resident in the node's memory (it does this both for pages that are home
to the node and for pages that have been replicated from remote homes). For such resident pages,
the TLB directory records the set of processors in the node that have mapped the page in their
TLBs.

3We assume that hardware cache coherence on the SMPs presents a memory model that is release consistent,
or that is stronger than release consistency. Since software shared memory between SMPs is release consistent, the
overall model seen by the programmer is release consistency.
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The page table is consulted each time a processor su�ers a TLB fault, yielding three possible
outcomes. If the desired page does not appear in the page table, then the page is not resident in
the node and the software DSM layer is invoked to obtain a copy from the remote home. If an
entry for the page is found but the page does not have su�cient privilege (i.e. a write fault occurs
on a page with read-only privilege), then the DSM layer is invoked to request a privilege upgrade
from the remote home. Finally, if an entry for the page is found and the privilege is su�cient, then
the faulting processor performs a TLB �ll from the page table, marks the TLB directory to re
ect
its copy of the mapping, and returns from the TLB fault.

The TLB directory is used to maintain coherence on mapping state cached in the processor
TLBs. This is the well-known TLB coherence problem for which many solutions have been pro-
posed [12, 13, 14, 15]. The solution used in MGS is closest to the one used in the PLATINUM
system [12]. When the software DSM layer invalidates a page resident on a node, the TLB directory
is consulted to determine the set of processors that have cached a mapping for the page. An invali-
dation request is posted to all processors in this copy set via inter-processor interrupts. Processors
can be interrupted selectively because the TLB directory speci�es the exact set of processors that
require TLB invalidation. The page invalidation operation does not proceed until all interrupted
processors have acknowledged that their TLB mappings have been invalidated.

In MGS, it is possible for concurrent accesses to occur on the page table and TLB directory
entries for the same page. For instance, a request for invalidation from the software DSM layer
may arrive at an SMP at the same time that a processor on the SMP tries to map the page. MGS
provides a lock for every resident page to enforce atomic access. TLB �ll and TLB invalidation
operations must acquire ownership of the lock before modifying page table or TLB directory state.
A single lock per resident page is su�cient since the associated page table and TLB directory entries
are always modi�ed together.

3.2.2 Per-Processor DUQs

The MGS system maintains a separate DUQ list for each processor in an SMP node. When a
processor performs a release operation, only the pages modi�ed by the processor performing the
release as indicated by its private DUQ list are twinned, 
ushed back to their respective home copies,
and invalidated. Separate DUQ lists prevent one processor's release from prematurely invalidating
dirty pages modi�ed by other processors in the same SMP. However, because multiple processors
in the same SMP may be modifying the same page, invalidation operations must keep the separate
DUQ lists coherent. In MGS, DUQ list coherence is piggy-backed onto the same interrupts that
enforce TLB coherence.

3.2.3 Single-Writer Optimization

For higher performance, the MGS system tries to leverage the hardware-supported cache-coherent
shared memory mechanisms provided within each SMP node as often as possible. While pages
shared between processors on distinct nodes must invoke software, an opportunity exists to bypass
the software DSM layer when sharing is con�ned to processors colocated on the same SMP. We
call such pages single-writer pages because there is a single outstanding write copy of the page in
the system, even though multiple processors in the same SMP node may be accessing the page.
Bypassing the software DSM layer for single-writer pages allows intra-node sharing to occur using
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e�cient cache-coherent hardware.

Conventional software DSM systems like Munin are incapable of realizing the potential reduction
in software DSM overhead for single-writer pages. Since Munin enforces consistency eagerly, every
release operation will naively force the software DSM layer to perform coherence on all modi�ed
pages. For single-writer pages, such coherence operations are unnecessary because only one SMP
node requires the most up-to-date version of the page. Moreover, the problem is not con�ned to
eager release consistent systems{naive implementations of lazy release consistency [16] for DSMPs
will su�er a similar problem.4

MGS exploits the weaker consistency guarantees needed by single-writer pages to reduce inter-
node communication. An extension to the basic Munin protocol in MGS, called the single-writer

optimization, monitors sharing patterns at runtime on a per-page basis, and dynamically identi�es
single-writer pages. MGS relaxes the enforcement of coherence for single-writer pages until the
single-writer sharing pattern is broken. Speci�cally, the single-writer mechanism in MGS consists
of three components:

Single-Writer Detection. The single-writer condition is met when there is exactly one out-
standing write copy of a page in the entire system. This condition can be detected at a page's
home SMP where the page directory can be consulted. Each time an SMP, known as the
client SMP, performs a release and sends a request to the home SMP for coherence, the home
looks at the page's directory entry and determines whether the single-writer condition is met.

Relaxing Coherence. Normally, when the home SMP receives a request for coherence, it initiates
invalidation. For those pages that meet the single-writer condition, the home SMP instead
responds to the client with a special message indicating that the coherence policy on the page
should be relaxed. The client SMP transitions its local copy of the page to a special single-
writer mode. In this mode, all subsequent release operations performed by any processor in
the SMP are ignored by the software shared memory layer. At the home SMP, the directory
is marked to indicate the page is in the single-writer mode.

Reverting to Normal Coherence. The system must revert to normal coherence when a pro-
cessor on another SMP tries to access the page (we will call this SMP the \3rd-party SMP"),
thus violating the single-writer condition. A page fault will occur on the 3rd-party SMP
since in the single-writer mode, there is only one outstanding copy of the page. During this
page fault, the home SMP consults the page directory as usual. For pages in the single-writer
mode, the home SMP defers service of the page fault and instead initiates invalidation. When
the invalidation completes, the contents of the single-writer copy returns to the home SMP
and restores the home copy to a coherent state. Finally, the 3rd-party SMP page fault is
serviced.

4In an LRC system, consistency occurs during acquires. For single-writer pages, an LRC system will communicate
with the home node on every acquire to determine whether coherence is necessary before the acquire operation is
allowed to complete. While single-writer pages will not require coherence under lazy RC as they do under eager
RC, the necessity to contact the home node for every acquire will still introduce signi�cant software overhead thus
degrading performance.
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3.2.4 Page Cleaning

The page cleaning mechanism maintains a single view of coherent data between the hardware and
software shared memory layers. Because of hardware caching, the contents of a page in the physical
memory of an SMP may not represent a coherent version of the page data. For instance, there
may be one or more cache lines in the page that are dirty in a processor's cache somewhere in the
SMP. If the software DSM protocol tries to move such a page (for instance, during an invalidation
operation), it may see incoherent data.

The problem arises because movement of a page out of an SMP occurs through a network
interface. Such interfaces typically perform data transfer by using DMA that is not coherent with
respect to the processor caches. For the data transfer to see coherent data, all hardware-distributed
copies need to be localized.5

MGS employs an all-software data localization technique, called page cleaning. In page cleaning,
the processor that initiates the localization operation walks the entire page. For each cache line in
the page, the processor forces the cache-coherence hardware to issue an invalidation for the cache
line. After this is completed for all cache lines in the page, we are guaranteed that the data from
the page is purged from all the processor caches.

3.3 Putting it All Together: Protocol Engines

The MGS multigrain shared memory protocol, including all the mechanisms described in Sec-
tion 3.2, is implemented by three software protocol engines: the Local Client, the Remote Client,
and the Server. The Local Client implements the TLB consistency protocol and the client-side
protocol for requesting page data from a remote SMP. The Remote Client performs page invali-
dation on a client SMP. And the Server handles the server-side protocol for page replication and
release operations. Figures 21 and 22 in Appendix A show the state transition diagrams and state
transition table, respectively, for all three protocol engines. Together, these two �gures completely
specify the MGS protocol. The interested reader is encouraged to read Appendix A for more details
about the MGS protocol design. Additional details can be found in [17].

4 MGS Prototype Implementation

We performed a prototype implementation of the MGS system on the MIT Alewife machine [18], a
hardware cache-coherent distributed shared memory architecture. Our prototype implements the
MGS software DSM protocol, described in Section 3.2 and Appendix A, as a software runtime
layer in between the application and Alewife's kernel. In our prototype, DSMP nodes are emulated
using a technique we call virtual clustering. Virtual clustering partitions a single Alewife machine
into smaller Alewife multiprocessors, and uses the MGS software DSM protocol for communication
between partitions. Virtual clustering permits con�guration of DSMP node size in software. Such
system recon�gurability allows us to study all the architectures within a DSMP family on a single

5There is another coherence problem that is symmetric to the invalidation case. Suppose a page is returned to the
operating system's pool of free pages before all the data inside the page is localized. At a future point in time, the
SMP reallocates the page to receive data from a remote SMP via DMA that is not coherent with processor caches.
When this page is remapped, it is possible for processors to access stale data due to residual copies of the data in the
hardware caches from the earlier mapping of the page.
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experimental platform (i.e. it allows us to turn the \knob" suggested in Figure 2). However, virtual
clustering sacri�ces some accuracy since the cost of inter-node messages are simulated. Later in
this section, we will discuss the impact that virtual clustering has on our results.

In the rest of this section, we describe our prototype implementation of the MGS system. First,
we give a brief overview of Alewife, and then we discuss three implementation issues for supporting
MGS on Alewife: software virtual memory, virtual clustering, and active messages. Finally, we
discuss the limitations of our implementation and how these limitations impact the results reported
in Section 5.

4.1 The Alewife Multiprocessor

Alewife is a distributed memory multiprocessor that supports the shared memory abstraction in
hardware. An Alewife machine consists of a number of homogeneous processing nodes connected
in a 2-D mesh topology. Each Alewife node consists of a modi�ed SPARC integer core, a 
oating
point unit, 64K-bytes of static cache RAM, 8M-bytes of dynamic RAM, a 2-D mesh routing chip,
and the CMMU, Communications and Memory Management Unit. Alewife supports sequential
consistency, and maintains cache coherence using a single-writer write-invalidate cache coherence
protocol. Also, Alewife provides a fast user-level messaging interface with DMA capability [19].
DMA data in messages are locally coherent.

4.2 Support for MGS

4.2.1 Software Virtual Memory

MGS requires a virtual memory system in order to implement software DSM. Alewife, however, is a
single-address space machine and does not support virtual memory. Our MGS prototype performs
address translation in software. The compiler identi�es which memory accesses require translation
and emits code in-line prior to these accesses to handle translation. The in-lined code reads a page
table entry from the processor's local page table, and checks access rights in addition to forming a
physical address. Accesses that violate access rights trap into a fault handler.

To minimize the runtime overhead of software address translation, only two types of accesses are
translated in MGS: pointer dereferences and accesses to elements of distributed arrays. All other
accesses, including instruction fetches, stack accesses, and local variable accesses, are unmapped
and incur no translation overhead. Translation for pointer dereferences is slightly more expensive
than translation for distributed arrays. Because pointers can point to both mapped and unmapped
objects in memory (whereas distributed arrays are always mapped), extra overhead to translate
pointer dereferences is necessary to determine whether a pointer points to a mapped or unmapped
object. This distinction can be made easily at runtime because MGS places mapped and unmapped
objects in disjoint parts of Alewife's address space.

Since software translation does not happen atomically, it is possible for an invalidation to
occur in between the translation lookup and the data access. To prevent this from happening, the
translation code includes markers that indicate a processor is in a translation critical section. A
request to invalidate a mapping will interrupt the processor that owns the mapping; the interrupt
handler checks to see if this processor is in a translation critical section. If so, the processor's trap
return PC is rolled back to the beginning of the critical section (the translation code is reentrant).
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4.2.2 Virtual Clustering

One way to prototype the MGS system is to build a DSMP by coupling several nodes together
across a local area network in which each node is an Alewife machine. Unfortunately, the Alewife
system does not support networking{there is no network interface hardware, nor does Alewife's
kernel support any of the communication interfaces required for local area networks.6 Instead, we
implement MGS on a single Alewife machine and rely on a software technique known as virtual

clustering to emulate a DSMP.

Virtual clustering logically partitions an Alewife machine into virtual SMPs by disallowing the
use of hardware-supported shared memory between logical partitions. The partitioning can be
easily enforced: since a processor cannot access what it cannot name, shared memory tra�c can be
contained within virtual SMP nodes simply by disallowing processors from mapping pages across
virtual SMP nodes. Such a page mapping policy will force any processor that wants to access pages
on remote nodes to trap into MGS software and faithfully run the identical software DSM code
that would run on an actual DSMP.

While our virtual clustering approach accurately accounts for software shared memory over-
heads, it does not address the overheads associated with communication across a local area network
since communication between virtual SMP nodes in our MGS prototype uses the fast Alewife mes-
saging mechanisms. To better model the cost of inter-SMP communication on an actual DSMP,
we arti�cially delay all inter-SMP messages. Whenever a processor sends a message to a remote
virtual SMP node, the message is placed on a software queue and a hardware timer is set for some
amount of delay. When the timer counts to zero, a timer interrupt handler dequeues the message
and sends it through the Alewife network. By arti�cially delaying messages, we model the cost of
inter-SMP communication as a �xed latency. Our implementation of MGS does not account for
contention neither in the LAN, nor in each SMP's interface to the LAN.

4.2.3 Active Messages

MGS relies heavily on the active message layer supported by Alewife for e�cient communication.
Two architectural features make active messages particularly e�cient. First, Alewife provides
support for DMA bulk data transfer in messages. All page-size data is transferred using DMA thus
relieving the processor of per-byte transfer overheads. Second, there are four hardware contexts in
the Alewife integer core that accelerate active message handler invocation. The hardware contexts
eliminate the need to save and restore registers on handler entry and exit. In addition, preallocation
of thread meta-data structures such as stacks and task blocks to each of the hardware contexts
allows incoming messages to execute as handlers immediately. Handler invocation becomes more
expensive only when there are no free hardware contexts on message entry.

4.3 Limitations of the Implementation

Our prototype implementation of the MGS system accurately re
ects the behavior of a DSMP in
that the software DSM protocol of the MGS system is fully implemented in a software runtime layer.
There is no emulation or simulation whatsoever in this software runtime layer{all code is faithfully

6Alewife relies on a host workstation for communication with clients in the local area.
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executed on the Alewife hardware as it would in an actual DSMP, including all required user-
kernel address space crossings. However, two elements of our implementation potentially impact
the accuracy of the results reported in Section 5: using virtual clustering to emulate DSMP nodes,
and using the Alewife machine as the node architecture.

Virtual clustering enables recon�guration of the DSMP node size in software, thus facilitating
the comparison between di�erent DSMP architectures. However, virtual clustering sacri�ces some
accuracy because the inter-node communication cost is modeled as a �xed latency. As a result,
contention in the inter-node network and at the inter-node network interfaces is not modeled. A
DSMP with an actual inter-node network would exhibit lower performance than our results indicate
if contention increases the actual inter-node communication latency beyond the �xed latency used
in our experiments. In Section 5.6, we quantify the impact of a �xed inter-node communication
latency assumption on our results by varying the cost of messaging between DSMP nodes and
observing the sensitivity of our results to changes in inter-node communication latency.

Using Alewife as the node architecture has two consequences. First, our prototype inherits the
support for fast interrupts provided by Alewife. On Alewife, a message arrival interrupt can be
serviced in 5-10 �sec, roughly an order of magnitude faster than on a commercial operating system.
Therefore, our results represent a \best-case" level of performance since an implementation of
our MGS design on a commercial operating system would achieve noticeably lower performance
due to the higher cost of interrupts. We note, however, that the impact of costly interrupts
on a commercial operating system can be minimized by modifying our MGS design to reduce
the frequency of interrupts. Prior work [20, 8] has investigated polling techniques to eliminate
interrupts for message invocation and TLB invalidation events. We believe that results similar to
those reported in Section 5 can be achieved on a commercial operating system if existing techniques
for reducing the frequency of interrupts are integrated into our MGS design.

Finally, Alewife is a DSM, not a bus-based multiprocessor. Since DSMs o�er superior scal-
ability, Alewife nodes permit larger node sizes than bus-based nodes. Our choice of a scalable
node architecture re
ects the trend in current server-class SMPs towards higher scalability. For
example, SUN Microsystem's Enterprise SMP servers [5] employ switched interconnect instead of
a bus (though the cache-coherence protocol in this machine is still broadcast-based). Also, the
SGI Origin [10] is a DSM marketed as a \Scalable SMP" that will replace SGI's bus-based servers.
Because we use a scalable node architecture, our results represent the performance of DSMPs built
using future server-class SMPs. DSMPs built with bus-based SMPs may not achieve the same
level of performance indicated by our results, particularly for DSMPs with large node sizes, since
bus-based architectures su�er contention across the bus interconnect.

5 Results

We �rst present measurements that show the cost of primitive MGS operations in Section 5.1. Sec-
tion 5.2 describes eight shared memory applications used in our application study, and Section 5.3
presents extensive results showing the performance of these applications on our MGS prototype.
Section 5.4 examines the bottlenecks preventing higher performance on MGS for the four most
di�cult applications, and discusses how application restructuring can relieve these bottlenecks.
Section 5.5 examines the performance of the restructured applications. Finally, Section 5.6 exam-
ines the sensitivity of our experimental results to inter-node network latency.
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Hardware Shared Memory Software Shared Memory
Cache Miss Local 11/12 TLB Fill 2302/3590
Cache Miss Remote 38/38 Page Fault 11772/21956
Cache Miss 2-party 42/43 Upgrade Fault 12441
Cache Miss 3-party 63/66 Page Fault, Single-Writer 29353/35293
Remote Software 425/707 Single-Writer Transition 9992

Software Virtual Memory Release (2 writers) 33424
Distributed Array Translation 16 Release (3 writers) 33516
Pointer Translation 23

Table 1: Shared Memory Costs on MGS. Whenever two numbers are given in the second column,
the �rst is for read operations, and the second is for write operations. All numbers are in cycles
assuming a 20 MHz clock frequency.

Application Problem Size Lines
Jacobi 1024 � 1024 Grid, 10 Iterations 205
Matmul 256 � 256 Matrices 239
FFT 32K Elements 322
Gauss 512 � 512 Matrix 322
Water 343 Molecules, 2 Iterations 2090
Water-Kernel 512 Molecules, 1 Iteration
Barnes-Hut 2K Bodies, 3 Iterations 4058
TSP 10-City Tour 665
Unstructured 2800 Nodes, 17377 Edges, 1 Iteration 9094
Unstructured-Kernel 2800 Nodes, 17377 Edges, 1 Iteration

Table 2: List of applications, their problem sizes, and their size in number of lines of C code.

5.1 Micro Measurements

Table 1 shows the cost of performing some basic shared memory operations on MGS. These mea-
surements were taken on an Alewife machine running at 20 MHz. There are three groups of
measurements. The �rst group measures the cost of hardware shared memory on Alewife. These
latencies represent the penalty for various types of cache misses. They do not include the overhead
of software address translation. The entry labeled \Remote Software" reports the cost of a miss
to a cache line under software directory control (the Alewife cache-coherence protocol, known as
LimitLESS [21], provides a �xed number of directory pointers in hardware and traps into software
for pointer over
ow).

The second group of measurements shows the cost of software address translation. Translation
for both distributed array objects and general pointers are shown. Finally, the last group of
measurements report the cost of MGS' software coherence protocol. All measurements were taken
assuming a 1K-byte page size and a 1000 cycle delay (50 �sec) for communication between SMPs.

5.2 Applications

Table 2 lists the applications used to study the performance of our MGS prototype. There are eight
applications in total: Jacobi, Matmul, FFT, Gauss, Water, Barnes-Hut, TSP, and Unstructured.
The �rst four are small scienti�c kernels. Jacobi performs an iterative relaxation over a two-
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Application Seq Sp1 SVM-Seq Ovhd SVM-Par Sp2
Jacobi7 1020816028 28.3 1618916600 1.59 53889697 30.0
Matmul 1967397265 31.3 3080884002 1.57 114667516 26.9
FFT 495224878 13.6 491769198 0.99 41487459 11.9
Gauss 2666915900 15.9 5034851631 1.89 217332821 23.2
Water 1284906732 26.1 1960029691 1.53 72948004 26.9
Water-Kernel 1532197479 58465483 26.2
Barnes-Hut 563916197 13.4 976160390 1.73 72772466 13.4
TSP 27371714 8.0 53485523 1.95 3040273 17.6
Unstructured 371716843 17.4 1260702520 3.39 87473784 14.4
Unstructured-Kernel 204001329 13444073 15.2

Table 3: Baseline application performance. \Seq" and \Sp1" report sequential running time and
speedup, respectively, on an Alewife machine without SVM. \SVM-Seq" reports sequential running
time with SVM. \Ovhd" is the amount of SVM overhead. \SVM-Par" reports running time with
SVM on a 32-node Alewife machine, \Sp2" reports speedup with SVM on 32 nodes.

dimensional grid, Matmul multiplies two dense matrices, FFT computes a one-dimensional fast
Fourier transform, and Gauss performs Gaussian elimination on a matrix. The next two are codes
from the SPLASH-I benchmark suite [22]. Water is a molecular dynamics code, and Barnes-Hut
is a hierarchical N-body simulation. Both simulate the motion of particles in three-dimensional
space. TSP is the traveling salesman problem. It uses a branch and bound algorithm to prune its
search and a centralized work queue to distribute work. Finally, Unstructured is a computation over
an unstructured mesh [23]. The computation resembles solving Eular equations on unstructured
meshes, but does not actually produce meaningful numeric results.

The last two columns of Table 2 specify the problem size used in the experiments for each
application, and the number of lines of C code, respectively. The two applications, Water-Kernel
and Unstructured-Kernel, are variants on the main Water and Unstructured applications and will
be described in Section 5.4.

Table 3 provides baseline performance numbers for our applications on Alewife without the
overheads of software shared memory that would be incurred by a DSMP. The �rst two columns
report performance numbers on Alewife without any software address translation overhead, i.e.
native Alewife performance. The \Seq" column reports running time on a single-node Alewife
machine (we do not report \Seq" numbers for the Water and Unstructured variants because they
are similar to the original versions of the applications), and the \Sp1" column reports the speedup
on a 32-node Alewife machine.

The last four columns report baseline performance for the applications with software virtual
memory, i.e. these numbers include the software address translation overheads described in Sec-
tion 4.2.1. \SVM-Seq" reports single-node performance on Alewife with software virtual memory.
The next column, labeled \Ovhd," is the ratio of the \SVM-Seq" and \Seq" columns. This is the
dilation in sequential running time due to software address translation, and thus quanti�es the
cost of software virtual memory. The column labeled \SVM-Par" reports the running time on a
32-node Alewife machine. These parallel performance numbers include the overhead of software

7Jacobi's problem size was not able to �t in the memory of a single Alewife node; therefore, we ran the problem on
4 nodes for both the \Seq" and \SVM-Seq" columns, and extrapolated the single node numbers by assuming linear
speedup from 1 to 4 processors.
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address translation, but do not include any other MGS-related overheads. In particular, the sys-
tem initializes all mappings needed by the application to write mode before the application begins
execution, so the application never su�ers TLB faults or page faults. Therefore, these numbers
represent the performance on a hardware DSM (modulo software address translation), and is what
we compare DSMP performance against in the results presented in Section 5.3.

Finally, the last column in Table 3, labeled \Sp2," is the speedup attained on 32 nodes with
software address translation (the ratio of the \SVM-Seq" and \SVM-Par" columns). Except for the
Jacobi application, an application known for its excellent speedup, all our applications exhibit only
modest to good speedups. This indicates that the introduction of software virtual memory overhead,
which we expect to parallelize perfectly, does not increase the computation-to-communication ratio
of our applications such that they become embarrassingly parallel.

5.3 Application Results

The results for the individual applications appear in Figures 6 through 13. All measurements were
performed on our MGS prototype, running on a 32-node 20 MHz Alewife machine with a page
size of 1K-bytes. The inter-SMP communication latency used is 1000 cycles (50 �sec) in all cases
(we will study the impact of varying the inter-SMP communication latency in Section 5.6). We
present the data using the performance framework discussed in Section 2.3. For each application,
we observe the application's execution time (along the y-axis) on a 32-processor DSMP as SMP
node size is varied from 1 to 32 in powers of 2 (along the x-axis).

Each execution time data point in Figures 6 through 13 have been broken down into four
components: time spent in user code, time spent in synchronization (for both locks and barriers),
and time spent in the MGS runtime layer. The four components are labeled \User," \Lock,"
\Barrier," and \MGS," respectively. The user component not only counts cycles spent usefully in
user code, but it also counts cycles spent in software address translation and Alewife cache-coherent
shared memory stall. The synchronization components include both the overhead of executing
synchronization code and waiting on synchronization conditions. Finally, the 32-processor SMP
node size data points (the rightmost bars in Figures 6 through 13) are exactly the runtimes reported
in the \SVM-Par" column of Table 3. As described earlier, these bars represent performance on an
all-hardware DSM, so there is no MGS component. In addition, the synchronization components
have been folded into the user component because the native Alewife experiments use a di�erent
synchronization library than the DSMP experiments for which cycle counting was not instrumented.

Based on the performance levels achieved, we group the applications into three categories:
coarse-grain, medium-grain, and �ne-grain applications.

5.3.1 Coarse-Grain Applications

Jacobi, Matmul, FFT, and Gauss, presented in Figures 6, 7, 8, and 9, respectively, are coarse-grain
applications. Using the performance metrics introduced in Section 2.3, these applications all have
a small multigrain potential and a small breakup penalty. The small multigrain potential indicates
that very little bene�t is experienced as SMP node size is increased and more hardware cache-
coherent shared memory is provided in each SMP node. The small breakup penalty indicates that
DSMPs closely match the performance of all-hardware DSMs on these applications. The combi-
nation of a small multigrain potential and a small breakup penalty implies that the performance
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pro�le for applications in the easy category is 
at.

All four applications exhibit coarse-grain sharing: each processor performs large amounts of
independent work before communicating with other processors. Coarse-grain sharing can be sup-
ported e�ciently by any shared memory implementation because the communication happens infre-
quently, so the cost of each communication has little impact on end performance. This observation
is consistent with the 
at performance pro�les in Figures 6 through 9. A 
at performance pro�le
signi�es that the application is insensitive to the underlying implementation of shared memory.

There are two anomalies in our results which warrant explanation. First, Jacobi exhibits a
negative breakup penalty (i.e. the DSMP outperforms the all-hardware DSM). Data communicated
in Jacobi is densely packed. The MGS software shared memory layer transfers such dense data
e�ciently by using Alewife's DMA facility to move data in bulk messages. Hardware DSMs must
move this data one cache-line at a time, which is less e�cient. Second, the multigrain potential
in Gauss is negative. This is an artifact of Alewife's LimitLESS cache-coherence protocol which
supports directory pointer over
ow in software. In Gauss, each pivot row is read by all processors
in the system. Since Alewife only supports 5 sharers in its hardware directory, LimitLESS overhead
is incurred when SMP node size is increased from 4 processors to 8 processors. Because the cost
of LimitLESS is quite high, as documented in Table 1, DSMPs with smaller SMP nodes (where
directory pointer over
ow is impossible) outperform those with larger SMP nodes.

5.3.2 Medium-Grain Applications

Water and Barnes-Hut, presented in Figures 10 and 11, respectively, are medium-grain applications.
In contrast to the coarse-grain applications, medium-grain applications exhibit a performance pro�le
that has both a large multigrain potential and a large breakup penalty. The large multigrain
potential (82% for Water and 76% for Barnes-Hut) is a positive result for DSMPs because it
means that supplying hardware-supported cache-coherent shared memory between more processors
(i.e. building larger SMP nodes) improves performance. This suggests that DSMPs o�er better
scalability than systems that only provide software support for shared memory. Unfortunately, the
large breakup penalty (159% for Water and 231% for Barnes-Hut) is a negative result because it
implies that there is a signi�cant performance gap between DSMPs and all-hardware shared memory
systems; therefore, on these applications, all-hardware DSMs hold a performance advantage over
DSMPs.

As Figure 10 shows, the primary obstacle to higher performance in Water is the MGS compo-
nent. The Water workload generates a signi�cant amount of software shared memory tra�c due to
poor data locality. In Water, the computation of inter-molecule force interactions involves frequent
write sharing between all processors. On DSMPs, this results in signi�cant inter-SMP communi-
cation, and thus high MGS overhead. Furthermore, the write sharing occurs at a granularity that
is smaller than a page; therefore, there is signi�cant false sharing that adds to the MGS overhead.
As SMP node size increases, the MGS overhead is partially alleviated since a larger fraction of the
write sharing is handled by cache-coherent shared memory. However, signi�cant MGS overhead
still occurs even at the largest SMP node sizes due to the all-to-all nature of write sharing in Water.

The results for Barnes-Hut appear in Figure 11. As the �gure shows, the most signi�cant source
of slowdown in Barnes-Hut is lock overhead. The poor lock performance in Barnes-Hut is due to an
e�ect that we call critical section dilation. In Barnes-Hut, a common operation on each processor is
to obtain a lock, write a value in some data structure, and then relinquish the lock. On a hardware
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DSM, these operations complete with very low overhead. However, on a DSMP, a TLB fault or
a page fault (or both) can be su�ered on the updated location. When they occur, such software
overhead signi�cantly increases the cost of the locking operation, and thus dilates the length of the
critical section leading to increased lock contention.

In addition to lock overhead, Barnes-Hut also exhibits signi�cant barrier overhead. The barrier
overhead arises from load imbalance due to both algorithmic and MGS e�ects. Algorithmically,
load imbalance occurs in Barnes-Hut because the amount of work associated with each body highly
depends on the distribution of the bodies in space. Although Barnes-Hut attempts to dynamically
load balance work (see [24] for details), the technique is not perfect thus accounting for some of the
barrier overhead. Load imbalance can also arise due to MGS overhead. Processors that provide
software DSM service for \hot" pages will carry a disproportionate fraction of the MGS protocol
processing load thus contributing to load imbalance.

5.3.3 Fine-Grain Applications

TSP and Unstructured, presented in Figures 12 and 13, respectively, are �ne-grain applications.
These applications have a similar performance pro�le as compared with medium-grain applications
(large multigrain potential and a large breakup penalty). A key di�erence, however, is the breakup
penalty is so large that the DSMPs do not achieve any e�ective speedup, even as SMP node size
is increased. The DSMP speedups for TSP and Unstructured are all below 2, with TSP exhibiting
slowdown in the worst case.

Figure 12 shows that TSP su�ers from extremely high lock overhead. The source of lock
overhead in TSP is the centralized work pool data structure that dynamically distributes work
across the machine. Each processor adds partially evaluated tours to the work pool and removes
them when it runs out of work. Because the work pool uses locks to enforce mutual exclusion, the
overhead associated with the work pool shows up as lock overhead due to critical section dilation
which is severe because there is only a single work pool for the entire machine. Notice, however, that
despite the contention on the centralized work pool data structure, the all-hardware DSM system
manages to achieve decent performance nonetheless. This speaks volumes about the robustness of
hardware DSMs on applications with poor locality characteristics.

The other �ne-grain application is Unstructured, whose results appear in Figure 13. Unstruc-
tured is by far the most di�cult application to achieve high performance on DSMPs because of its
highly irregular data access patterns. The application performs a computation on an undirected
graph which is read from an input �le. Because of the graph's irregular nature, runtime preprocess-
ing techniques [25] are used to schedule computation associated with the graph onto processors.
After preprocessing, much of the execution time is spent in edge loops, or loops that perform com-
putations associated with the edges in the graph. Each iteration of an edge loop reads values from
the two graph nodes connected by the edge, computes a result, and updates the result into the
two graph nodes. Locking in the edge loops is used to provide mutually exclusive access to those
graph nodes which are accessed by multiple processors (i.e. graph nodes whose edges are assigned
to di�erent processors by the runtime preprocessing phase).

The poor performance of Unstructured on DSMPs is attributable to all three overheads reported
in Figure 13: lock, barrier, and MGS. The lock overhead component arises because the locks in
the edge loops su�er from the now familiar critical section dilation e�ect. Barrier overhead is due
to an imbalance in the schedule of edge computations inside the edge loops. While the runtime
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Application Bottleneck Transformation
Water-Kernel Data Locality Tiling
Barnes-Hut Node Allocation Hotspotting Concurrent Allocation

False Sharing on Nodes Distribute Freelist
Other Critical Section Dilation Add Releases

TSP Contention on Work Pool Distribute Work Pool
Unstructured-Kernel Data Locality Runtime Tiling

Runtime Load Balancing

Table 4: Summary of performance bottlenecks and transformations.

preprocessor tries to minimize load imbalance, it also tries to maximize data locality which is often
a con
icting requirement. Finally, the MGS overhead component is due to poor data locality, most
signi�cantly in the edge loops that leads to critical section dilation.

5.4 Application Transformations

In this section, we further examine the medium-grain and �ne-grain applications studied in Sec-
tion 5.3. In particular, we propose transformations to address the bottlenecks that limit perfor-
mance, and apply them to the applications by hand. In most cases, the transformations are similar
to optimizations performed by existing compilers; therefore, we expect several of our transforma-
tions can be automated in an optimizing compiler. In the interest of space, we only provide a
brief description of the application transformations. The interested reader is referred to [17] for a
detailed description of the transformations and a discussion on how existing optimizing compilers
implement such transformations.

Table 4 lists the four medium-grain and �ne-grain applications, the bottlenecks that limit per-
formance, and the transformation(s) that relieves each bottleneck. In the case of Water and Un-
structured, we only study a kernel from the original application where signi�cant performance
bottlenecks exist. Water-Kernel executes the force interaction computation where Water spends
most of its execution time and where the all-to-all write sharing patterns occur (see Section 5.3).
Unstructured-Kernel executes a single edge loop. The baseline performance of these kernels on
Alewife can be found in Table 3.

We address the data locality problems in the Water workload by performing a loop tiling
transformation. Loop tiling groups molecules together into tiles, and restructures the loops that
perform the force interactions between molecules such that the order in which the interactions are
performed are blocked according to the tiles. This increases data locality since all the interactions
associated with a particular tile are computed before considering new tiles.

Three transformations are proposed for the Barnes-Hut workload in Table 4, all to address the
critical section dilation problems discussed in Section 5.3. One source of critical section dilation
occurs on a freelist data structure that is protected by a single lock. We remove the lock and allow
processors to allocate concurrently o� the freelist by statically assigning freelist entries to processors
in an interleaved fashion. Next, we physically distribute the freelist so that each processor is
allocated entries that are contiguous in memory. This removes false sharing communication later
when the entries are manipulated within critical section code (and thus relieves the dilation to
those critical sections). Finally, there are a few instances in Barnes-Hut where a large number of
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Figure 18: Latency sensitivity results for Jacobi.
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Figure 19: Latency sensitivity results for Water.

messages) and 20,000 cycles, or between 4.75 �sec and 1 msec. In the following discussion, we
examine the sensitivity of application performance to changes in the inter-SMP communication
latency beyond the 50 �sec baseline latency used in our experiments.

Figure 18 shows that Jacobi is insensitive to variations in inter-SMP communication latency
since the slope of the three curves are small. When the inter-SMP communication latency is 10,000
cycles or 500 �sec (a factor 10x higher than our baseline latency), execution time increases by only
5.8%, 3.1%, and 3.2% for 1-, 4-, and 16-processor node sizes, respectively, over the execution time
which assumes the baseline network latency. Because Jacobi performs very little communication,
even very large changes in inter-SMP communication latency only have a small impact on over-
all performance. Therefore, both contention e�ects and higher-latency networks are unlikely to
signi�cantly alter the results reported for coarse-grain applications like Jacobi in Section 5.3.

Compared to Jacobi, the Water workload displays much higher sensitivity to inter-SMP com-
munication latency due to its higher communication volume, as indicated by the steep slopes of
the three curves in Figure 19. When the inter-SMP communication latency is 2,000 cycles or 100
�sec (a factor 2x higher than our baseline latency), execution time increases by 12.47%, 8.31%, and
12.41% for 1-, 4-, and 16-processor node sizes, respectively, over the execution time which assumes
the baseline network latency. At an inter-SMP communication latency of 10,000 cycles or 500 �sec,
execution time increases by 83.4%, 80.13%, and 42.23%, respectively. At an inter-SMP communi-
cation latency of 20,000 cycles or 1 msec, execution time increases by 184.2%, 147.9%, and 82.1%,
respectively. These results suggest that higher latency due to contention e�ects or slower networks
will alter the results reported for medium-grain applications like Water in Section 5.3. To maintain
reasonable agreement with our results (say within 10%), fast networks that have a one-way message
latency no greater than 2x of our baseline latency are necessary, with ample bandwidth to avoid
contention. If slower networks are used, however, we observe that the disagreement with our results
will be much less for DSMPs with large SMP nodes. Figure 19 demonstrates that DSMPs with
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Figure 20: Latency sensitivity results for Water-Kernel with tiling.

large SMP nodes are much less sensitive to latency than DSMPs with small SMP nodes since the
inter-SMP communication volume decreases signi�cantly with increasing node size.

Finally, Figure 20 shows the latency sensitivity of the tiled Water-Kernel code. We can see
from the �gure that the tiled code is less sensitive to inter-SMP communication latency than
the original Water application. At an inter-SMP communication latency of 10,000 cycles or 500
�sec, execution time increases by 51.6%, 34.6%, and 13.6% for 1-, 4-, and 16-processor node sizes,
respectively, over the execution time which assumes the baseline network latency. At an inter-SMP
communication latency of 20,000 cycles or 1 msec, execution time increases by 103.4%, 62.0%, and
33.0%, respectively. Since the locality transformations reduce inter-SMP communication volume,
they also reduce the application's sensitivity to inter-SMP communication latency.

6 Related Work

The work presented in [4] describes our early version of the MGS system which forms the basis for
this paper. Since then, several multigrain shared memory systems that exploit SMP nodes have been
built. Compared to MGS, these systems more deeply explore the implementation issues associated
with industry-grade operating systems since they all use commercial SMPs. On the other hand, the
MGS work deals more deeply with the behavior of applications in a multigrain environment, since
it is the only work to compare di�erent DSMP con�gurations, all-software DSMs, and all-hardware
DSMs on a single experimental platform.

Most recently, the work in [6] describes an implementation of the home-based lazy release
consistency protocol (HLRC) [26] on a cluster of four 4-way Intel Pentium Pro SMPs. Compared
to MGS, this system uses a more aggressive software DSM protocol that enforces coherence lazily
at acquire operations, and therefore generates fewer inter-node messages. The main contribution
of the work lies in an extension of LRC for SMPs that employs a two-level timestamp, one for
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each processor and one for each node, to maintain the causal relationship between acquire and
release operations required by LRC. By recording both per-processor and per-node timestamps,
the system is able to more accurately determine the set of pages that require invalidation at an
acquire operation, thus avoiding unnecessary invalidations that would occur if timestamps were
maintained on a per-node basis only. In the MGS system, our separate DUQ lists serve a similar
purpose to \re�ne the invalidation set" for eager release consistency protocols (see Section 3.2).

The Cashmere-2L system [7] is a cluster of eight 4-way DEC AlphaServer SMPs. Again, as in
the HLRC SMP system, Cashmere-2L implements a more aggressive software DSM protocol than
MGS that is modeled after LRC. One crucial di�erence is that Cashmere-2L employs the Memory
Channel [27] as the inter-node network. The Memory Channel provides hardware support for low-
latency remote writes between nodes, thus client nodes in the Cashmere-2L protocol can perform
updates to home node copies with very low overhead and without interrupting the home node. In
contrast, the MGS system targets less aggressive networks. The Cashmere-2L protocol also employs
an \exclusive mode" for pages cached by a single SMP node. This protocol optimization provides
the same communication reduction bene�ts for LRC protocols as our single-writer optimization
provides for eager RC protocols (see Section 3.2).

In [8], an implementation of the Shasta system [28] on a cluster of four 4-way DEC AlphaServer
SMPs is described. The base Shasta system uses software address translation (similar to our
implementation of software virtual memory described in Section 4.2.1 but with much less overhead)
to enable a variable software DSM coherence unit size. One major challenge in extending the base
Shasta system to SMPs lies in addressing the race condition that occurs between translation code
and page invalidation operations. The Shasta SMP solution explicitly synchronizes invalidation and
translation code to eliminate the race condition. Our implementation of MGS encounters the same
problem, but our solution detects the race condition and recovers via roll back (see Section 4.2.1).
Compared to MGS, the Shasta SMP system implements a more eager release consistency protocol
that propagates updates before release operations, much like in a hardware DSM. However, Shasta
SMP is less sensitive to false sharing than MGS despite such eager consistency because of the
variable-sized coherence units supported in Shasta. As with Cashmere-2L, another di�erence is
that Shasta SMP employs the Memory Channel interconnect for low-latency communication. The
Shasta SMP system also minimizes the impact of expensive interrupts by polling for inter-node
messages and mapping invalidation events. As discussed in Section 4.3, such polling techniques can
bene�t an MGS system targeted for commercial SMPs.

Concurrent with the original MGS work, two other multigrain systems were developed. Soft-
FLASH [9] built multigrain shared memory on a cluster of four 8-way SGI Challenge SMPs. Three
di�erent software shared memory protocols were implemented on this cluster. Two of the protocols,
a sequential consistency protocol and an eager release consistency protocol, are the same proto-
cols supported on the FLASH multiprocessor [29]. The third protocol is a variant of LRC. The
MGS protocol is most similar to the eager release consistency protocol. Experiences on SoftFLASH
demonstrate two bottlenecks that limit performance on the SGI Challenge: the high cost of TLB
coherence due to expensive interrupts, and limited inter-node bandwidth. In addition to Soft-
FLASH, another multigrain system was built using four 4-way SMPs over an ATM network [30].
The primary focus of this work was to study prefetching techniques to hide the large latencies
associated with paging between SMP nodes.

The construction of the MGS system relies heavily on software shared memory protocols for
uniprocessor nodes. Many software shared memory protocols have been proposed [31, 32, 11, 2, 16,
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33]). As described throughout this paper, the software DSM layer in MGS most closely resembles
the Munin system [11]. Better software DSM performance has been demonstrated since Munin
using lazy release consistency, most notably in the Treadmarks system [2]. As described above,
several multigrain systems since MGS have employed LRC to reduce inter-node communication.

Finally, the idea to couple hardware cache-coherent shared memory with software page-based
shared memory was �rst suggested in [34]; however, this work was purely simulation based using
an extremely simple machine model. None of the design nor performance issues associated with
integrating hardware and software shared memory were explored.

7 Conclusion

This paper investigates building large-scale shared memory machines using small- to medium-scale
multiprocessors as the basic building block. Such multigrain systems are attractive for two rea-
sons. First, small- to medium-scale multiprocessors are economically viable and will have an ever
increasing presence in the local area environment. It simply makes sense to leverage these commod-
ity components to build larger systems. Second, SMPs already have hardware support for shared
memory. Large-scale shared memory machines built from SMPs can achieve high performance if
they e�ectively leverage the e�cient hardware mechanisms provided by each SMP.

Our work makes several novel contributions in the context of DSMP architectures. We present a
fully functional design of a multigrain shared memory system, called MGS, and provide a prototype
implementation of MGS on the MIT Alewife multiprocessor. We de�ne two performance metrics,
the breakup penalty and the multigrain potential, that characterize application performance on
DSMPs. Finally, we conduct an in-depth application study using our MGS prototype implemen-
tation, including a study of data locality transformations to more e�ectively leverage the clustered
nature of DSMPs. While performance evaluations have been conducted on other DSMP systems,
our results are the �rst to explore the entire spectrum of DSMP architectures, and to provide a
consistent comparison of these architectures against traditional all-software and all-hardware DSMs
on a single experimental platform.

Based on the results of our experimental study, we draw several conclusions regarding the
performance of DSMPs. First, applications that exhibit coarse-grain sharing patterns achieve high
performance regardless of the underlying mechanisms for shared memory. All-software DSMs,
DSMPs, and all-hardware DSMs o�er equivalent performance on these unchallenging applications.
Second, for applications with �ner-grained sharing patterns, the �ne-grain mechanisms provided
by DSMPs within SMP nodes o�er signi�cant performance advantages. The four medium- to
�ne-grain applications perform between 61% and 88% faster (i.e. the multigrain potential ranges
from 61% to 88%) on DSMPs as compared against all-software DSMs. This evidence strongly
suggests that SMPs are much better building blocks than uniprocessor workstations for large-
scale multiprocessors. Unfortunately, our study also shows that these applications exhibit �ne-
grain sharing across the entire machine. Such global sharing places a severe load on the software
communication mechanisms between SMP nodes. As a result, our third conclusion is that DSMPs
cannot o�er nearly the same level of performance on di�cult applications compared with all-
hardware DSMs. In our study, hardware DSMs perform 159% to 1014% faster (i.e. the breakup
penalty ranges from 159% to 1014%) on medium- and �ne-grain applications.

In addition, our study also explores application transformations that further improve perfor-
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mance by exposing the clustered nature of the machine to the programmer or compiler. We �nd
that �ne-grain sharing can be con�ned within SMP nodes through program transformations that
enhance data locality. Such transformations allow applications with demanding communications
requirements to better leverage the �ne-grain shared memory mechanisms provided within SMP
nodes. When the transformations are applied, three out of the four di�cult applications exhibit
breakup penalties below 40%. The other has a moderate breakup penalty of 66%. Based on these
results, our fourth conclusion is that DSMPs can become competitive with all-hardware DSMs in
absolute performance, even on di�cult �ne-grain applications. It is important to note that even
after data locality transformations are applied, DSMPs still hold a signi�cant performance advan-
tage over all-software systems. Our results show that the multigrain potential after transformations
ranges between 58% and 812%. This result leads to our last conclusion that there is something fun-
damental about the nature of �ne-grain sharing in these applications. Our transformations do not
eliminate �ne-grain sharing; they only limit the extent to which �ne-grain sharing occurs across the
machine. Therefore, supporting such applications e�ciently still requires �ne-grain shared memory
mechanisms.
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A MGS Protocol Engine Speci�cation

The MGS multigrain shared memory protocol, including all the mechanisms described in Sec-
tion 3.2, is implemented by three software protocol engines called the Local Client, the Remote
Client, and the Server. Figures 21 and 22 show the state transition diagrams and state transition
table for these protocol engines, respectively, and together completely specify the MGS protocol.
In this section, we brie
y describe the protocol engines. Since a full exposition of the protocol is
beyond the scope of this paper, we refer the interested reader to [17] for more details.

The Local Client implements both TLB consistency and the client-side protocol for requesting
page data. The Local Client runs on a processor each time it su�ers a TLB fault. Three states
in the Local Client correspond to the three states that a mapping can have in a processor's TLB:
TLB INV, TLB READ, and TLB WRITE. If the faulting processor �nds a mapping in the local
SMP, it copies the mapping and immediately transitions to the TLB READ or TLB WRITE state;
otherwise, the page does not exist in the local SMP. In this case, the faulting processor enters the
BUSY state and negotiates with the Server on the home SMP for replication of the page. Mutual
exclusion within an SMP on page table state during TLB fault handling is achieved via a shared
memory lock. There is one such lock for each mapping on each SMP.

The Remote Client performs page invalidation on a client SMP, and runs on the processor
that owns the client-side copy of a page. When a request for page invalidation occurs, the Remote
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Figure 21: State transition diagram for the MGS Protocol.

Local Client ) Remote Client Messages Remote Client ) Local Client Messages
UPGRADE Upgrade Local Page from Read UP ACK Acknowledge Upgrade

to Write Privilege
PINV ACK Acknowledge TLB Invalidation PINV Invalidate TLB Entry
P2INV ACK Acknowledge DUQ Invalidation P2INV Invalidate DUQ Entry

Local Client ) Server Messages Server ) Local Client Messages
RREQ Read Data Request RDAT Read Data
WREQ Write Data Request WDAT Write Data
REL Release Request RACK Acknowledge Release

Remote Local Client ) Server Messages Server ) Remote Client Messages
ACK Acknowledge Read Invalidate INV Invalidate Page
DIFF Acknowledge Write Invalidate

and Return Di�
1WDATA Acknowledge Single Writer 1WINV Invalidate Single-Writer Page

Invalidate and Return Data
WNOTIFY Notify Upgrade from Read to Write

Privilege
ACK1W Acknowledge Single Writer Status 1WGR Grant Single-Writer Status

Table 5: Message types used to communicate between the Local Client, Remote Client, and Server
machines in the MGS Protocol.
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Arc Event Precondition L Side Effects Out Message

1 RTLBFault pagestate != INV +/R mapping! TLB, tlb dir = tlb dir [ fsrcg
2,5 WTLBFault pagestate == READ +/H mapping! TLB, tlb dir = tlb dir [ fsrcg UPGRADE) l home
3,4 WTLBFault pagestate == WRITE +/R mapping! TLB, tlb dir = tlb dir [ fsrcg

DUQ = DUQ [ faddrg
5 RTLBFault pagestate == INV +/H RREQ) g home

WTLBFault pagestate == INV +/H WREQ) g home
6 RDAT –/R map page,tlb dir = fsrcg, pagestate = READ
7 WDAT –/R map page,tlb dir = fsrcg, pagestate = WRITE

DUQ = DUQ [ faddrg
UP ACK –/R DUQ = DUQ [ faddrg

8 Release +/H addr =DUQ–>head, DUQ = DUQ–>tail REL) g home(addr)
9 RACK DUQ == � –/R
10 RACK DUQ != � addr =DUQ–>head, DUQ = DUQ–>tail REL) g home(addr)
11 PINV invalidate TLB PINV ACK ) l home
12 PINV invalidate TLB,DUQ = DUQ – faddrg PINV ACK ) l home
13,14 P2INV DUQ = DUQ –faddrg P2INV ACK ) l home

15 UPGRADE make twin, pagestate = WRITE UP ACK ) src, WNOTIFY) g home
16 INV pagestate == READ +/H clean page, free page, count =j tlb dir j PINV ) tlb dir
19 INV pagestate == WRITE +/H make diff, free page, count =j tlb dir j PINV ) tlb dir
22 1WINV +/H clean page, count =j tlb dir j PINV ) tlb dir
25 1WGR +/H count =j tlb dir j P2INV) tlb dir
17,20,23 PINV ACK count != 0 count = count – 1
26 P2INV ACK count != 0 count = count – 1
18 PINV ACK count == 0 –/R tlb dir = �, pagestate = INV ACK ) g home
21 PINV ACK count == 0 –/R tlb dir = �, pagestate = INV DIFF) g home
24 PINV ACK count == 0 –/R tlb dir = � 1WDATA ) g home
27 P2INV ACK count == 0 –/R ACK1W ) g home

28,30 RREQ read dir = read dir [ fsrcg RDAT ) src
29,30 WREQ write dir = write dir [ fsrcg WDAT ) src
29 WNOTIFY read dir = read dir – fsrcg,

write dir = write dir [ fsrcg
31 REL j write dir j != 1 count =j read dir [ write dir j, INV ) read dir [ write dir

rl = fsrcg, rd = wr = �

REL j write dir j == 1, count =j read dir [ write dir j, INV ) read dir, 1WINV ) write dir

j read dir j != 0 rl = fsrcg, rd = wr = �

REL j write dir j == 1, count = 1,rl = fsrcg, rd = wr = � 1WGR) write dir

j read dir j == 0
32 REL count =j read dir [ write dir j, INV ) read dir

rl = fsrcg, rd = wr = �

33 ACK count != 0 count = count – 1
DIFF count != 0 count = count – 1, buffer diff data
1WDATA count != 0 count = count – 1, copy data to home
RREQ rd = rd [ fsrcg
WREQ wr = wr [ fsrcg
REL rl = rl [ fsrcg
WNOTIFY
ACK1W j rd [wr j != 0 count = 1 INV ) write dir

34 ACK count == 0 merge diffs,read dir = write dir = � RACK ) rl, RDAT) rd, WDAT ) wr

DIFF count == 0 merge diffs,read dir = write dir = � RACK ) rl, RDAT) rd, WDAT ) wr

1WDATA count == 0 read dir = write dir = � RACK ) rl, RDAT) rd, WDAT ) wr

35 ACK1W j rd [wr j == 0 RACK ) rl

36 RREQ count = 1,rd = fsrcg, rl = wr = � INV ) write dir

WREQ count = 1,wr = fsrcg, rl = rd = � INV ) write dir

Figure 22: State transition table for the MGS Protocol. Italicized identi�ers represent sets of
processor IDs. <message>)<pid> denotes that we send <message> to <pid>. <message>)
<set> denotes that we send <message> to every processor speci�ed in <set>. j<set>j denotes
the number of elements in <set>. <set>{>tail returns <set> minus the �rst element. \l home"
and \g home" denote the ID of the processor that owns the local physical copy and the home copy
of a page, respectively. \pagestate" refers to the access privilege, and \mapping" refers to the page
mapping, for the local physical copy of the page in question. \src" refers to the source processor
ID of the current message.
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Client invalidates the physical page, and sends TLB invalidation requests to all processors that have
mapped the page. One of the INV IN PROG states is entered, depending on the access privilege
and state of the local copy of the page, to wait for the TLB invalidations to complete. The Remote
Client also performs page upgrade operations. A page upgrade happens when a processor tries
to write to a page for which the local SMP only has read privilege. The Remote Client makes a
twin of the read page, upgrades the privilege from read to write, and noti�es the home SMP of the
upgrade.

Finally, the Server handles the server-side protocol for page replication and release operations,
and runs on the processor whose memory is home for the page. The Server has four states: READ,
WRITE, SWRITE, and REL IN PROG. The READ state indicates that only read copies of the
page are in the system, the WRITE state indicates the presence of multiple read-write copies, and
the SWRITE state indicates a single write copy. The SWRITE state tracks pages in the special
single-writer mode, as discussed in Section 3.2.3. The REL IN PROG state is entered when a release
operation is invoked. All requests for replication that arrive when a page is in the REL IN PROG
state are queued and then satis�ed after the release completes.

Figure 22 gives the annotations for the transition arcs in Figure 21. Most of the notation is
given in the caption of Table 22. The column labeled \L" is part of the state transition precondition
and refers to the shared memory lock necessary for mutual exclusion on page table state at the
client SMP. A \+" indicates that the lock must be acquired before the precondition is satis�ed;
otherwise, a \{" appears indicating that no lock acquire is necessary. A second value indicates the
state of the lock after the state transition completes. The lock is either released or held, denoted by
\R" and \H," respectively. The messages used to communicate between the three protocol engines
that appear in Figure 22 are listed with brief descriptions in Table 5.
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