
How to Choose the Grain Size of a Parallel Computer

Donald Yeung, William J. Dally, and Anant Agarwal

MIT Laboratory for Computer Science and

Arti�cial Intelligence Laboratory

Massachusetts Institute of Technology

Cambridge, MA 02139

Abstract

Designers of parallel computers have to decide how to apportion a machine's resources
between processing, memory, and communication. How these resources are apportioned
determine the grain and balance of the resulting machine. Often, these design decisions
are made according to rules of thumb which often lead to unoptimized designs. This paper
presents an analytical framework upon which designers can reason about the design space of
parallel computers, and make design decisions based on analysis. The framework is grounded
upon the notion of cost-e�ective design. It focuses on the needs of applications and tries to
identify machines that will execute these applications e�ciently. This type of optimization
is made di�cult by the fact that the application domain may be diverse, each application
demanding very di�erent resources for e�ciency.

This paper makes three contributions in the context of parallel computer design. First, it
provides an analytical framework based on a \blc mpP" machine characterization that con-
siders processing, memory, local and global communication, and latency as separate machine
resources. This characterization is unique because it accounts for locality by considering local
and global communication separately. Second, the model predicts that general-purpose par-
allel computers are realizable, but may be possible only at extremely high machine budgets.
Finally, the model shows that the amount of memory architected into current production par-
allel machines is suited for machines with 10s to low 100s of processors. These machines are
not cost-e�ective for moderately or massively parallel systems unless astronomical problem
sizes are desirable.

1 Introduction

A parallel computer consists of a set of nodes interconnected by a network. Each node is
comprised of processor(s), memory, and communications as shown in Figure 1. All parallel
computers share this structure regardless of the execution model they support: shared-memory,
message-passing, or dataow. Parallel computers are distinguished by the mechanisms they
provide to support their execution model and by the division of resources across the nodes and
within each node.

Two key questions in the design of a parallel computer involve grain size (the size of each
node) and balance (the relative size and performance of the components within each node). Grain
size and balance play a large part in determining the e�ciency or performance per unit cost of a
machine. If an engineer builds a small number of very large nodes, a point of diminishing returns
is reached where node performance increases very slowly (if at all) as node size is increased. On
the other hand, building a large number of very small nodes will also result in diminishing returns

1

C

PM

NETWORK

C

PM

C

PM

C

PM

Figure 1: All parallel computers consist of a set of nodes interconnected by a network. Each
node consists of processor(s), memory, and communications.

as processor performance drops and communication costs rise. The highest e�ciency occurs at
an optimal point between the two extremes. Similarly, as observed by Kung [4], there is an
optimal balance of resources between the processor, memory, and communication components
within a node.

In this paper, we develop an analytical framework for choosing the grain size and balance
of a parallel computer that is based on a \blc mpP" (pronounced \block MPP") machine char-
acterization. We choose as independent variables the number of nodes, P , processing power
per node, p, the memory per node m, and the communication bandwidth per node, c. As an
extension to the model, we consider global bandwidth per node, b, and network latency, l. Using
these variables, we derive formulae for performance and cost.

A performance function for an application estimates the running time of the application
as a function of the variables. An ensemble performance function is used to characterize the
performance across a set of applications. Cost functions estimate the cost of realizing a parallel
computer with a given set of variables. We approximate the cost function of the whole computer
as the sum of the cost functions of its components and independently derive cost functions for
the processor, memory, and communications components. Using cost functions, we predict how
the cost of a computer changes as we vary the number of nodes and the composition of each
node.

Together, the cost functions and performance functions predict the e�ciency (perfor-
mance/cost) of a machine and thus allow us to perform a number of constrained optimizations
on our independent variables. We can, for example, compute the points and contours in machine

space that correspond to best e�ciency, best performance for a given cost, and lowest cost for a
given level of performance.

The current trend to base the grain size and balance of multicomputer nodes on the size and
balance of current workstations while convenient usually results in machine con�gurations that
are far from the optimal contour. While there has been much debate on this topic, few concrete
results have been reported. Machine balance continues to be determined more by convenience
and market forces than by engineering analysis. Our primary motivation in undertaking this
study is to provide an analytical framework to enable engineers to logically choose machine grain
size and balance.

This study calls into question the notion of a general-purpose machine. A machine con�g-
uration tuned to a particular application may have much greater e�ciency on that application
than a general purpose machine that must make compromises to perform well on a broad range
of applications. Thus, just as conventional machines are often con�gured with di�erent amounts

2

Machine Parameters
p Processing power per node (operations/cycle).
m Memory size per node (words).
c Communication bandwidth per node (words/cycle).
b Global communication bandwidth per node (words/cycle).
l Communication latency per node for zero-length global message (cycles).
P Number of nodes.
V A machine con�guration vector: P; p;m; c; b; l.

Cost Parameters
K(V) Cost of a given machine con�guration, V (in DRAM bit equivalents or Dbe).
Kn(p;m; c) Cost of a node with con�guration, (p;m; c) (Dbe).
Km(m) Cost of memory with capacity m (Dbe).
Kp(p) Cost of a processor with performance p (Dbe).
Kc(c) Cost of communications with bandwidth c (Dbe).
Kb(b) Cost per node of global communication with bandwidth b (Dbe).
Kl(l) Cost of supporting communication latency l per node (Dbe).

Application Parameters
N problem size
R(N;P) Requirements vector for an application.
Rp(N;P) Required number of processing operations per node.
Rm(N;P) Required amount of memory words per node.
Rc(N;P) Required number of words of local communication per node.
Rb(N;P) Required number of words of global communication per node.
Rl(N;P; V) Latency inherent to the computation.

Table 1: Basic Model parameters for machine, cost, and applications.

of processing, memory, and I/O to support commercial versus scienti�c applications, we can
expect parallel computers to be con�gured with di�erent grain sizes and di�erent balances for
di�erent application areas.

The remainder of this paper explores the issues of grain size and balance in more detail.
Section 2 describes the notation used throughout the paper. Section 3 gives a qualitative analysis
of cost and performance. Section 4 develops a simple cost model, and Section 5 develops a
simple performance model. These two simple models are extended to include the e�ects of
global bandwidth and latency in Section 6. Section 7 discusses solutions to both the simple
and extended models, and in Section 8, we present the results of these solutions. Finally, in
Section 9, we present our conclusions. s.

2 Nomenclature

Table 1 the notation used in this paper. It points out the three important categories of pa-
rameters for our model: machine, cost, and application parameters. Throughout the paper,
performance and execution time are measured in units of machine cycles, information in units
of machine words, and cost in DRAM bit equivalents which are de�ned in Section 4. Refer to
Appendix A for an exhaustive list of notation.

3

3 Qualitative Analysis

It is instructive to examine the qualitative properties of the cost and performance functions
before deriving speci�c formulae.

If we assume that these functions are analytic and monotonic, we can make some qualitative
observations about the following machine con�gurations:

1. Ve, the vector of values, P; p;m; c; b; l, that gives the highest overall e�ciency on a class of
applications.

2. Vk(k), the vector of values that gives the best performance on a class of applications for a
given �xed cost, k.

3. VT (T) the vector of values that gives the lowest cost for a given execution time, T , for a
class of applications.

The e�ciency optimized vector Ve describes a single point in machine space that represents
the optimum machine size, grain size, and balance for a machine to provide throughput per
unit cost. In a throughput oriented computing center, it would be better to have several Ve
machines than fewer larger machines or more smaller machines. A common misconception is
that Ve ought to be a uniprocessor. It seems intuitive to save on communication and spend all
the money on processing. The aw with this argument is that uniprocessors spend too much
money on memory per processing element. To run a problem of a given size, two uniprocessors
would have to have twice the memory of a single 2-processor parallel computer. The parallel
computer would o�er better cost-performance.

The cost vector, Vk(k), de�nes a one dimensional locus of points in machine space. Each
point on this contour describes the fastest single machine that can be built for some cost k. As
k is increased, this vector is adjusted by investing in the element of the vector (P; p;m; c; b; l)
that provides the best incremental return on investment. There exists some minimum cost, kmin

for which a single-processor machine with a minimal processor and enough memory to hold the
problem can be built. As k is increased from this point, the processor power is increased until
the point is reached where it is more cost e�ective to add nodes than to add cost to a single
node. This point de�nes the optimal grain size for a two-node machine. As the total cost, k, is
increased from this point, the number of nodes, P , increases as does the optimal grain size. This
increase in grain size with machine size occurs because larger machines require higher bandwidth
communication networks and hence have a larger incremental cost of adding nodes.

As cost continues to increase, we eventually reach the cost of the optimal machine, ke, where
Vk(ke) = Ve. Above this, machines continue to get more powerful, but with diminishing returns.
As returns on investment continue to diminish, eventually, a point is reached where no further
increase in performance can be realized. The lowest cost at which such performance can be
realized de�nes kmax.

The performance vector, VT (T), de�nes the same locus of points in machine space as the
cost vector, Vk. Consider machines as de�ning points in a cost-time (k,T) space. In this space,
VT and Vk de�ne exactly the same set of points { with the axes interchanged. There is some
minimum time, Tmin, for which a machine built in a given technology can solve the problem
at any price. As we increase T from this point, e�ciency increases until we reach Te where
VT (Te) = Ve. Beyond this point, e�ciency decreases until we reach, Tmax, corresponding to the
machine with cost kmin.

4

4 Cost Model

Now that we have qualitatively examined the tradeo�s involved with balance and grain size, we
will derive an example cost model that will be used in the remainder of the paper to illustrate
these tradeo�s quantitatively. The cost model derived here is based on CMOS microprocessors,
commodity DRAM memories, and direct interconnection network technology. The �rst two
are technologies that are used in almost all cost competitive computer systems today. Direct
networks are widely used by many types of parallel computers. Many approximations are made
to keep the cost model simple.

Other cost models are possible given a di�erent base technology or a di�erent set of approx-
imations. While this may change the exact numerical results derived later, the methodology for
determining balance and grain size remains the same. Also, as described above, the qualitative
relationship between machine size, grain size, balance, and performance remains the same as
long as the cost model is monotonic.

Kn(p;m; c) gives the cost of a node as a function of the node con�guration, (p;m; c). To
�rst approximation, the total cost of the machine is,

K(V) = PKn(p;m; c) (1)

Later, we will more accurately account for global bandwidth and latency. We will consider
the three components of the node (processor, memory, and communication interface) separately
and compute the node cost as the sum of these component costs,

Kn(p;m; c) = Kp(p) +Km(m) +Kc(c): (2)

We use silicon area as a measure of cost for each component. Silicon area reects the
fundamental cost of building a component and thus is a good basis for comparing alternatives
as opposed to market price which includes many arti�cial factors. To simplify calculation, we
normalize cost to units of DRAM bits, viz. one bit of DRAM takes one unit of area and one
unit of cost. We express the cost of other chips in terms of DRAM bit equivalents (Dbe). We
assume that the chips from which a node is built are small enough that cost is approximately a
linear function of area (i.e. we ignore the exponential cost factor due to low yield of large chips).
Logic processes are often lower volume and hence higher cost than memory processes. We use
a factor, kl, the cost of a unit of logic area, to account for this di�erence.

4.1 Memory Cost

We approximate memory cost as a linear function of capacity,

Km(m) = Kmsm+Bm: (3)

Here, m is the memory size in words, Kms is the cost per word of memory, and Bm is
the �xed overhead cost of the memory. This overhead includes logic for translation, address
decode, data multiplexing, and memory peripheral circuitry. For our calculations, we assume
that Kms = W (wordsize) = 64, and the overhead, Bm, is 105. This model ignores the cost
of providing memory bandwidth for the sake of simplicity. Bandwidth is accounted for in
calculating communication cost below.

5

4.2 Processor Cost

We model the relationship between processor cost, Kp, and performance, p, as an exponential
curve reecting a base cost with diminishing returns as cost is increased:

p =

(
0 if Kp < Bp

ps(1� e�(Kp�Bp)=Kps) otherwise
(4)

A cost of Bp is required to achieve a minimal functional processor, perhaps a bit-serial
integer unit with a few registers and no cache. As cost is increased beyond Bp, performance
increases linearly at �rst with slope ps=Kps. This reects the performance improvement gained
by widening the data path, adding pipelined function units, dedicated oating-point hardware,
and a modest-sized cache. As hardware is added, however, there are diminishing performance
returns and performance saturates at an asymptote of ps.

To model current logic versus memory costs, we set kp = 10 Dbe. Studying the layout of
some simple RISC processors [1, 7, 6] leads to a base cost of Bp = 104kl = 105 Dbe. That is, a
minimal processor can be built in the area of 10K DRAM bits at a cost of 100K DRAM bits.
A cost constant of Kps = 106kl = 107 Dbe, and a ps of one operation per cycle were arrived at
from the study of some high-end processors [15, 13, 14].

Inverting (4) gives processor cost in terms of performance:

Kp(p) = Bp +Kps ln

�
ps

ps � p

�
: (5)

4.3 Communication Cost

Most routers for direct networks are I/O-bound chips. Thus, we model communications cost of
our node as the area of a pin-bounded router chip:

Kc(c) = Kcsc
2 +Bc: (6)

Since chip area grows as the square of the pads on the chip, cost is proportional to c2, where
c is the communication bandwidth in words/cycle. The communication cost factor, Kcs is the
cost in DRAM bit equivalents of one word per cycle of I/O bandwidth. For our calculations,
we use Kcs = 4 � 106. We arrive at this by observing that 100c2 DRAM bits of area are
required to provide perimeter space for c pads, W=64 pads are required for each word/cycle of
communication bandwidth, and this area is kl = 10 times more expensive than DRAM area.
The base area for a router, Bc is estimated at 105 from a study of simple routers [3, 2, 1, 8].

5 Performance Model

To predict the performance of an application on a machine with a particular con�guration,
V , we characterize the application by its requirements vector, R(N;P). Again, we divide the
requirements into processor, memory, and communication components, Rp(N;P); Rm(N;P);
and Rc(N;P) respectively. Run an application of a problem size N on P processing nodes

6

requires Rp(N;P) processing operations per node, Rm(N;P) words of memory per node, and
Rc(N;P) words of communication per node.

To simplify our calculation of performance, we assume that the resource demands are uni-
form over time and that processing and communication can be completely overlapped. Appli-
cations that are nonuniform, for example an application with several phases each of which has
di�erent requirements, can be handled by dividing the application into its phases, calculating
the requirements for each separately, and applying our methods for ensembles of applications
described in Section 7.3. Our assumption that communication and processing are overlapped
imposes constraints on how the problem is structured and on the node architecture. In the node,
this condition implies that the processor implements mechanisms such as prefetching or context
switching to tolerate the latency of communications.

Given a requirements vector, R, and a machine con�guration vector, V , we compute the
performance (execution time) of an application as the maximum of its compute time and its
communication time provided that there is su�cient memory to hold the problem:

T (R; V) =

(1 if m < Rm

max
�
Rp

p ;
Rc

c

�
if m � Rm

(7)

The required number of operations, Rp, divided by the processing speed, p, yields the com-
pute time. Similarly, the required number of words to be communicated, Rc, divided by the
communication rate, c, gives the communication time. Our assumption that the processing and
the communication can be completely overlapped allows us to use the max operator to obtain
the e�ective run time.

6 Global Bandwidth and Network Latency

We now extend our cost and performance models to consider two additional properties of the
network: global bandwidth and latency that capture the e�ect of communication locality on
cost and performance. Per-node global bandwidth, b, is the bisection bandwidth of the machine
divided by the number of nodes, P . Per-node latency, l, is the elapsed time required to complete
a zero-length communication action across the space occupied by a single node. For regular mesh
and torus networks or for networks where switch delay dominates wire delay, l corresponds to
the time for a single hop. The portion of communication time due to message length is already
accounted for by our bandwidth parameters c and b and thus is not included in l.

6.1 Cost Model Extension

To provide b words/cycle of global bandwidth per node on a machine packed in three physical
dimensions, bP words/cycle must pass through the bisection plane of the machine. Since there

are (P
1

3)2 nodes in the plane, there are bP=P
2

3 = bP
1

3 words/cycle passing through the bisection

area of each processing node. A node bisection area of bP
1

3 implies a node volume of (bP
1

3)
3

2 =
b3=2P 1=2. We model cost as being proportional to volume. Generalizing to n dimensions:

Kb(b) = Kbsb
n=(n�1)P 1=(n�1) + Bb: (8)

7

Here Kbs is the cost of providing one word/cycle of bandwidth through the volume of a
processing node. The base cost of global bandwidth is given by Bb. For our calculations, we use
Kbs = 106 and Bb = 105.

Latency impacts the cost of both local and global communication. However, to simplify our
analysis we consider the cost of latency separately from the cost of bandwidth. The minimum
latency across a node is limited by physics to be lmin, the time of ight across a single node.
We model cost by the following equation that approaches in�nity as latency approaches this
minimum:

Kl(l) =
Kls

l� lmin
+ Bl: (9)

For our calculations we use Kls = 105, lmin = 0:1, and Bl = 0. The base cost is set to zero
as the base communications cost is already accounted for in Bc and Bb. The lmin of 0.1 reects
the ratio of switch delay to wire delay in current interconnection networks.

6.2 Performance Model Extension

To estimate the e�ect of global bandwidth on performance, we extend the requirements vector
for an application, R(N;P), with a global bandwidth component, Rb(N;P), that gives the num-
ber of words of global communication per node required by the application. The required global
communication, Rb, is that subset of the total communication, Rc, that is non-local and hence
makes use of the network bisection. The execution time bound due to global communication is
Rb(N;P)=b. For simplicity we consider an all-or-nothing model of local versus global communi-
cation. A more detailed model could use a hierarchical model of locality and characterize the
machine by hierarchical bisection bandwidths. However, such a model would greatly complicate
calculations with minimal e�ect on the �nal results.

Latency a�ects performance by introducing idle time during which the machine must wait
for a communication operation to complete. We characterize the latency requirements of an
application by Rl which denotes the total length (in units of the linear dimension of a node) of
the communication operations along the critical path of the application. The minimum execution
time of the program due to latency is then Rll. If this is the largest term in our execution time
equation, the computation is latency bound and this term gives the execution time. If there is
a larger term, the computation is bandwidth bound and latency does not e�ect execution time.

Rl is a function of both the application and of the network on which it is run. For example,
Rl for a switch-delay dominated multistage network is log2(P) times the number of messages in
the longest path of the computation. For direct networks, Rl is the sum of the messages in the
critical path of the computation, weighted by the number of hops traversed by each message.

To account for global bandwidth and latency we modify the execution time equation (7) as
follows:

T (R; V) =

(1 if m < Rm

max
�
Rp

p ;
Rc

c ;
Rb

b ; Rll
�

if m � Rm
(10)

8

7 Optimization

Now that we have derived formulae for cost, K(V), and performance, T (R; V), we can use them
to constrain a search through machine space for an optimized machine. We allow cost to vary,
and at each �xed cost point, we �nd the machine that maximizes performance. The resulting
locus in machine space traced by this search is the vector, Vk(k). This section discusses the details
of this optimization procedure for individual applications and for an ensemble of applications.

7.1 Optimization in the Basic Model

Consider the basic model in the context of a single application. We make the observation that
at all cost points, the optimal machine con�guration always satis�es the following equations:

Rp

p
=

Rc

c
; m = Rm (11)

These equations are a statement of balance. The �rst equation states that communication
and computation times should be equal. If they are not equal, we can take resources from the
faster component without increasing runtime. The second equation states that the memory
should exactly �t the problem. If the memory is larger than this amount, it can be reduced
without impacting performance. When the processing and communication times are equal, and
the memory �ts the problem, the machine con�guration, V , is balanced for requirements, R. In
a balanced machine, each resource is utilized to its fullest. Under a cost constraint, the optimal
machine will lie along the locus of points representing balanced machines; if a machine is not
balanced, then the amount of underutilized resources can be reduced, decreasing cost. The
balance constraint greatly reduces the size of the search space, and thus the complexity of the
optimization procedure.

To illustrate our methodology, we now focus on optimizing a machine under a cost constraint
for the two-dimensional Jacobi relaxation problem. Let the problem size be N and our cost point
be k. We will calculate Vk(k).

For block partitioned Jacobi relaxation, the application is characterized by the following
functions:

Rp(P;N) = 4 + 4
N

P
; Rc(P;N) = 8

s
N

P
; Rm(P;N) = 4 +

N

P
(12)

Our balance constraints are:

m = Rm(P;N) = 4 +
N

P
;

p

c
=

4N=P

8
p
N=P

=
1

2

s
N

P
(13)

Our cost constraint is:

k = P

�
Bm +Bc + Bp +Kmsm+Kps log

�
ps

ps � p

�
+Kcsc

2
�

(14)

9

Assuming a balanced con�guration, our runtime is given by:

T (P;N; V) =

�
4 + 4N

P

�
p

(15)

The optimization process attempts to minimize T speci�ed in Equation 15, subject to the
constraints in Equations 13 and 14. The resulting vector V represents the optimal, balanced,
machine for Jacobi. Section 8.1 presents and discusses the results for this optimization.

7.2 Optimization in the Extended Model

The analysis for the extended model is similar to the analysis for the basic model with the added
terms for global bandwidth and latency. The balance constraint for optimized machines still
holds, and the balance equations become:

Rp

p
=

Rc

c
=

Rb

b
= Rll; m = Rm (16)

Consider the block partitioned Jacobi relaxation application in the context of the extended
model. The application requirements in Equation 12 are still valid, but they need to be aug-
mented by global bandwidth and latency requirements:

Rb(P;N) = 2

p
N

P
; Rl(P;N) = 1 (17)

Observe that the latency parameter is one because the application displays perfect locality
(see Appendix B for applications with more interesting global requirements).

Our balance constraints are:

m = Rm(P;N) = 4 +
N

P
;

4 + 4NP
p

=
8
q

N
P

c
=

2
p
N
P

b
= l (18)

Our cost constraint assuming two dimensional networks is:

k = P

�
Bm +m+ Bc +Kcsc

2 +Bp +Kps log

�
ps

ps � p

�
+Bb +Kbsb

2P + Bl +
Kls

l� lmin

�
(19)

Assuming a balanced con�guration, our runtime is the same as before, given in Equation 15.
Section 8.1 presents and discusses the results from the extended model.

7.3 Optimization for Ensembles

To optimize a machine for a collection of applications or for a non-uniform application, we use
ensembles. The ensemble is modeled as a set of requirements vectors; Ri(N;P) denotes the
requirement vector for element i of the ensemble. The optimization method depends on what
kind of machine resource management is assumed, space-sharing or time-sharing.

10

In the space-sharing model, the machine is divided into partitions, allocating Pi processors
for ensemble element i (

P
i Pi = P). This models the case where a number of applications are

running simultaneously on a machine as well as the case where a single application forks several
processes that run in parallel on distinct nodes before joining. We assume that each node in the
machine has the same values for p, m, and c. The execution time for a space-shared ensemble
is the maximum execution time over its partitions. Assuming Ni is the size of the problem for
application i,

Tss = max
i

"
max

Ri
p(Ni; Pi)

p
;
Ri
c(Ni; Pi)

c

!#
(20)

In our time-shared model, each application is run in sequence using the entire machine.
This models the case where applications time-share the machine as well as the case of a single
application that proceeds serially through a number of phases each with di�erent requirements.
In this case, execution time is the sum of the individual execution times:

Tts =
X
i

"
max

Ri
p(Ni; P)

p
;
Ri
c(Ni; P)

c

!#
(21)

In both the time-shared and the space-shared models, the memory constraint must be sat-
is�ed for each application by requiring that m � maxi(mi).

The analysis for the space-sharing model is harder than that for the time-sharing model.
In space-sharing, for a given machine size P , it is necessary to consider all possible partitions
of those P processors into i partitions. In time-sharing, the search over these permutations is
avoided since all ensemble applications run on the entire machine. For simplicity, we choose to
only consider the time-sharing model when we present results for ensembles in Section 8.3.

Finally, Equations 20 and 21 are in the context of the basic model. Extending these to con-
sider global bandwidth and latency is accomplished by inserting the terms for global bandwidth
and latency:

Tss = max
i

"
max

Ri
p(Ni; Pi)

p
;
Ri
c(Ni; Pi)

c
;
Ri
b(Ni; Pi)

b
; Ri

l(Ni; Pi)l

!#
(22)

Tts =
X
i

"
max

Ri
p(Ni; P)

p
;
Ri
c(Ni; P)

c

Ri
b(Ni; Pi)

b
; Ri

l(Ni; Pi)l

!#
(23)

8 Model Results

In this section, we study 4 applications in the context of our model: Jacobi, FFT, Nbody, and
Matrix Multiply. We choose these applications because they are diverse and require conicting
machine requirements to run e�ciently. The application requirements needed by the model for
Jacobi were presented in Section 7; the application requirements for FFT, Nbody, and Matrix
Multiply can be found in Appendix B.

11

8.1 Results for Individual Applications

We �rst present results for the basic model when applications are considered individually. The
analysis in this section assumes �xed problem size. The problem size for the Jacobi application
is chosen to be 108 words; the problem sizes for the other applications are chosen such that all
the applications require equal amounts of memory when executed on a single processor.

Figure 2 shows the breakdown of per-node cost into processor, memory, and communications
components as a function of total machine cost,K. Figure 3 shows the number of processors and
grain size as a function of machine cost. All costs are expressed in terms of DRAM bit equivalents
(Dbe). Assuming DRAM cost of $25/Mbyte, the range of machine cost spans $30,000 to $300
trillion. While this upper limit is ludicrous, we explore this region to show asymptotic behavior
of the applications. In practice, considering machines above a cost of 1015 Dbe (about $1 billion)
is unrealistic.

The basic model predicts similar behavior for all four applications even though their re-
quirements are diverse. Figure 2 shows per-node processor cost begins at some small value and
increases to a plateau. This is true for all the applications except for Matrix Multiply whose
processor investment starts at a higher value in order to yield a balanced solution. In the plateau
region, greater incremental performance is gained by adding processors than by increasing the
cost of a single processor; therefore, per-node processor cost remains �xed and machine size
grows. As the number of nodes continues to increase, communication requirements to support
these nodes increases as well. Eventually, communication cost is high enough to make the addi-
tion of more processors less attractive than increasing processor performance. This marks the
end of the plateau region as processor cost again climbs, this time alongside communication cost
which continues to increase in order to support the growing machine size. Finally, all machine
parameters atten out when application performance saturates. This happens when there is
one processor for every element, and processor throughput becomes asymptotically close to 1
op/cycle. In theory, processor investment should continue to increase, but the diminishing re-
turn in processor performance is eventually undetectable by the precision of our calculations.
The point of performance saturation occurs at a cost of kmax, and the execution time is Tmin

The left graph in Figure 3 shows the trend of increasing machine size with increasing cost.
Jacobi and Nbody reach the same limit of one processor per element as does FFT, but since FFT
starts with a smaller problem size, its limit is actually lower. In Matrix Multiply, it is possible
to have more processors than elements because the blocking creates more elements. The right
graph of Figure 3 shows how computer grain size, or overall node cost decreases as the �xed
amount of memory is divided over an increasing number of nodes; eventually, grain size levels
o�. In some applications, grain size actually increases slightly again when the optimal processor
cost increases due to higher expense in communication to support a larger machine.

Figures 4 and 5 report results for the model when global bandwidth and latency considera-
tions are included, and are analogous to Figures 2 and 3 for the basic model case. Similar trends
that are observed in Figure 2 can be observed in the processor, communications, and memory
components in Figure 4. This is especially true in the Jacobi and Nbody applications since both
of these applications exhibit good locality and thus do not require great investments in global
bandwidth and latency. FFT and Matrix Multiply, however, are harder to run on large numbers
of processors. FFT inherently has poor locality, and blocked Matrix Multiply has poor locality
when each processor has a small problem size (which occurs at large numbers of processors). At
high machine budgets and large machine sizes, the performance of FFT and Matrix Multiply
becomes latency-bound. This is reected in a sharp increase in global latency investment, and

12

 Node

�

�

| | | | | | | | | | |

|
|

|
|

 FFT

 Machine Cost (Dbe)

 N
od

e
C

om
po

ne
nt

 C
os

t (
D

be
)

 Kp
 Kc
 Km

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020

106

107

108

109

����
���

��
�

�

�

�

�

�

�

�

��������������������

�

�

�

�

�

�

�
�
�����������������������������

 Node

�

�

| | | | | | | | | | |

|
|

|
|

 Jacobi

 Machine Cost (Dbe)

 N
od

e
C

om
po

ne
nt

 C
os

t (
D

be
)

 Kp
 Kc
 Km

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020

106

107

108

109

����������
�
�
�
�
�

�

�
�
�

�
�����������������

�

�

�

�

�

�

�
�
�����������������������������

 Node

�

�

| | | | | | | | | | |

|
|

|
|

 Nbody

 Machine Cost (Dbe)

 N
od

e
C

om
po

ne
nt

 C
os

t (
D

be
)

 Kp
 Kc
 Km

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020

106

107

108

109

���������������
�

�

�

�

�

�
����������������

�

�

�

�

�

�

�
�
�����������������������������

 Node

�

�

| | | | | | | | | | |

|
|

|
|

 Matrix Multiply

 Machine Cost (Dbe)

 N
od

e
C

om
po

ne
nt

 C
os

t (
D

be
)

 Kp
 Kc
 Km

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020

106

107

108

109

������������������
��

��
�

�
���

�

�

��������

�

�

�

�

�

�

�

�

�

�

�

�

�
�
�
�
���������������������

Figure 2: Node component costs for four applications as a function of machine cost under the
basic model. Kp, Kc, and Km are the per-node investments in processor, communications, and
memory, respectively. The curve labeled \Node" shows the total per-node cost. All costs are in
DRAM bit equivalents (Dbe).

13

 Matrix Multiply
� Jacobi
� Nbody
� FFT

| | | | | | | | | | ||
|

|
|

|
|

|
|

|
|

|
|

 Number of Processors vs Machine Cost

 Machine Cost (Dbe)

 N
u
m

b
e
r

o
f
P

ro
ce

ss
o
rs

 P

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
100

101

102

103

104

105

106

107

108

109

1010

1011

�

�

�

�
�
�
�
�
�
�
�
�
�
�
��

�
�
���

����������������

�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
��

�
�������������������

�

�

�

�
�
�
�
�
�
��

�
��

��
���������������������

� Nbody

 Matrix Multiply
� Jacobi
� FFT

| | | | | | | | | | ||
|

|
|

|
|

|
|

 Node Grain Size vs Machine Cost

 Machine Cost (Dbe)

 N
o
d
e
 G

ra
in

 S
iz

e

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
10-1

100

101

102

103

104

105

106

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�
�������������������

�

�

�
�
�
�
�
�
�
�
�
�
�
�
��

���������������������

�

��������
��

�
��

��
�

��������������������

Figure 3: Number of processors and grain size versus machine cost under the basic model.

a much slower increase in machine size as can be seen in Figure 5.

8.2 Problem Scaling

In the previous analysis, problem size remains constant with respect to cost. This assumes the
case in which more money is applied to run a given problem faster. Often, the motivation for
building larger machines is to run problems that couldn't have been run with smaller machines,
and this assumes scaling problem size with machine size. Under problem scaling, the curves
presented in the previous section will change. One of the main di�erences is that at low-budgets,
problem sizes will be smaller so that less of the total machine budget will be spent on memory.
In the previous analysis, the cost of low-budget machines is dominated by the cost of memory.
Also, at high budgets, �xed problem scaling results in performance saturation as the number of
processors approaches the number of elements in the problem size. With problem scaling, larger
problem sizes are chosen for large machines so that there is enough parallelism to support many
more processors.

8.3 Results for Ensembles

The left and right graphs in Figure 6 show the results for a time-sharing ensemble under the
basic model and extended model, respectively. These graphs show how well the applications run
on a machine that is optimized for the ensemble of applications. Along the horizontal axis is the
machine budget. The individually plotted points show slowdown of each application running on
the ensemble machine compared to how it would run on a machine that is optimized for that
particular application. The points with the line drawn through them show the performance
of the entire ensemble of applications. This is the slowdown when all the applications are run
on the ensemble machine in a time-shared manner compared against the sum of runtimes that
would result if each application were run on a machine optimized for that application.

14

 Node

�

�

�

�

| | | | | | | | | | ||
|

|
|

|
|

|
|

|
|

 FFT

 Machine Cost (Dbe)

 N
od

e
C

om
po

ne
nt

 C
os

t (
D

be
)

 Kp
 Kc
 Km
 Kb
 Kl

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
105

106

107

108

109

1010

1011

1012

1013

1014

������
����

�����
���

���
������

�������
���

�

�

��
�
��

�
�
����������������������������

�

�

�

�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

���
���

���
���

��

�
�
�
�
�
�
�
�
�
�
�

�

�

�

�

�

�

�

�

�
�
�
�
�
�
�
�
�
�

 Node

�

�

�

�

| | | | | | | | | | ||
|

|
|

|

 Jacobi

 Machine Cost (Dbe)

 N
od

e
C

om
po

ne
nt

 C
os

t (
D

be
)

 Kp
 Kc
 Km
 Kb
 Kl

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
105

106

107

108

109

����������
�
�
�
�
�

�

�
�
�

�
�����������������

�

�

�

�

�

�

�
�
�����������������������������

�������������������������������������

�

�

�

�

�

�
�����������������

 Node

�

�

�

�

| | | | | | | | | | ||
|

|
|

|

 Nbody

 Machine Cost (Dbe)

 N
od

e
C

om
po

ne
nt

 C
os

t (
D

be
)

 Kp
 Kc
 Km
 Kb
 Kl

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
105

106

107

108

109

���������������
�

�

�

�

�

�
����������������

�

�

�

�

�

�

�
�
�����������������������������

�������������������������������������

 Node

�

�

�

�

| | | | | | | | | | ||
|

|
|

|

 Matrix Multiply

 Machine Cost (Dbe)

 N
od

e
C

om
po

ne
nt

 C
os

t (
D

be
)

 Kp
 Kc
 Km
 Kb
 Kl

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
105

106

107

108

109

������������������
��

��

�
�
��

�

��
���

��
�
��

�

�

�

�

�

�

�

�

�

�

�

�

�
�
�
�
���������������������

������������������
�
�
�
�

�

�

�
�
�

�
��

����
�
��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

Figure 4: Node component costs for four applications as a function of machine cost under
the extended model. Kp, Kc, Km, Kb, and Kl are the per-node investments in processor,
communications, memory, global bandwidth, and global latency, respectively. The curve labeled
\Node" shows the total per-node cost. All costs are in DRAM bit equivalents (Dbe).

15

 Matrix Multiply
� Jacobi
� Nbody
� FFT

| | | | | | | | | | ||
|

|
|

|
|

|
|

|
|

|
|

 Number of Processors vs Machine Cost

 Machine Cost (Dbe)

 N
u
m

b
e
r

o
f
P

ro
ce

ss
o
rs

 P

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
100

101

102

103

104

105

106

107

108

109

1010

1011

�

�

�

�
�
�
�
�
�
�
�
�
�
�
��

�
�
��

�����������������

�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
��

�
�������������������

�

�

��
�
��

�
�
��

��
��

��
��

��
����

������
������

� Nbody

 Matrix Multiply
� Jacobi
� FFT

| | | | | | | | | | ||
|

|
|

|
|

|
|

 Node Grain Size vs Machine Cost

 Machine Cost (Dbe)
 N

o
d
e
 G

ra
in

 S
iz

e

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
10-1

100

101

102

103

104

105

106

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�
�������������������

�

�

�
�
�
�
�
�
�
�
�
�
�
�
��

���������������������

�

������������������������������������

Figure 5: Number of processors and grain size versus machine cost under the extended model.

� Ensemble

 Matrix Multiply
� FFT
� Jacobi
� Nbody

| | | | | | | | | | |

|1

|10

 Ensemble Performance

 Machine Cost (Dbe)

 S
lo

w
d
o
w

n

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020

 Basic Model

�

�

�

�

�

�

�

�
�
�
�
�
��

�
����

�
������

���
��������

�

�

�

�

�

�

�

��

�

�
�
�
�

�
�
�

�
��

��������
���������

�

�

�

�

�

�

�

�

�
�
�
�
��

�
�
�
�
�
�
�
�
��

����
���������

�

�

�

�

�

�

�

�

����
��

��
��

�
��

�
��

����
���������

� Ensemble
� FFT

 Matrix Multiply
� Nbody
� Jacobi

|||| | | | | | |||| | | | | | |||| | | | | | |||| | | | | | |||| | | | | | |||| | | | | | |||| | | | | | |||| | | | | | |||| | | | | | |||| | | | | | |||| | | ||
|

|
|

|
|1

|
|

|
|

|
|

|
|

|10

|
|

|
|

|
|

|
|

|100

|
|

|
|

|
|

|
|

|1000

|
|

|

 Ensemble Performance

 Machine Cost (Dbe)

 S
lo

w
d
o
w

n

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020

 Extended Model

�

�

�

�

�

�����

�����
�
�

�

�

�

�
��

�

�

�

�
�

���
�

�

�

�
�

�

�

�

�

�
�

�

���������

�

�

�

�

�

�
�
�
�

�

�

�
�

���
�

�

�

�
�

�

�

�

�

�

�

�

����

�����

��
��

�
�
����

�
��������

���

�

�

�

�

�

�

����

���
�
�

�
��

��
�
�
���

�
��������

��

�

Figure 6: Ensemble performance under both the basic model and extended model.

16

In the basic model, there are three interesting regions of behavior. First, at low cost, there is
not enough money in the budget to satisfy all the applications. Jacobi, Nbody, and FFT perform
best when machine size grows quickly, but this is prevented by the memory requirements of
Matrix Multiply. The total memory required to run Matrix Multiply grows with machine size,
and at low budgets, there isn't enough money to support this memory cost for machine sizes that
would be optimal for the other applications. Hence, Jacobi, Nbody, and FFT perform poorly
and bring down the performance of the entire ensemble. Second, when the budget becomes large
enough to a�ord the extra memory needed by Matrix Multiply, then Jacobi, Nbody, and FFT
perform well, and the performance of the ensemble improves substantially. In this region, the
performance of Matrix Multiply worsens slightly though. This is due to the fact that at higher
budgets, Matrix Multiply is able to employ more processors than data elements, but the other
applications cannot. In this case, the needs of the majority drive the design of the machine at
the expense of Matrix Multiply performance. Finally, at extremely high budgets, enough money
exists to satisfy the needs of all the applications reected by the fact that all applications and
the ensemble converge to a slowdown of 1, in the limit.

In the extended model, when global bandwidth and latency are considered, the results are
similar to those in the basic model. The design of the ensemble machine is initially driven by
Matrix Multiply because of its memory requirements making ensemble performance poor, and
when these memory needs can be ful�lled by increasing budget, ensemble performance improves.
The behavior of the extended model departs from that of the basic model at large budgets where
slowdown begins to increase and continues to worsen with increasing budget. At high budgets,
Jacobi, Nbody, and Matrix Multiply prefer many processors. FFT, being an application with
poor locality, requires very high cost in global latency to perform well at these large machine
sizes. Even at our ludicrously high budgets, there is not enough money to satisfy the global
latency requirements for FFT. Had we extended our cost range even further, eventually, the
poor performance would reach a maximum, turn around, and improve to 1 in the limit.

8.4 Looking at Real Machines

The results thus far have examined the predictions of the model for ideal machines. We would
now like to compare these predictions against existing machines. In particular, we would like to
investigate the per-node memory investments of current machines and see how they compare to
model predictions. We do this for two experimental machines, the Alewife [9] machine, and the
J-Machine [10], and two production machines, the CM-5 [11], and the Cray T3D [12].

Figure 7 plots per-node memory cost as a function of number of processors, P . The solid
lines show the per-node memory cost of the ideal machine as predicted by the model in the
ensembles analysis. There are �ve such curves, each corresponding to a di�erent problem size
(these are the problem sizes of the Jacobi application in the ensemble). The dashed lines show
the per-node memory costs of the 4 machines which we consider. These curves are horizontal
since per-node memory does not change with machine size. For each machine (dashed line),
we can �nd the points of intersection with problem sizes (solid lines), and at these points of
intersection, read o� the ideal machine size (x-axis). For a given problem size, this number is
the most cost-e�ective machine size as predicted by the model. For instance, with a problem
size of 10 million elements, we see that the Cray is cost-e�ective at about 10 processors, the
CM-5 at low 10s of processors, the Alewife machine at low 100s of processors, and the J-Machine
at low 1000s of processors. The production machines aren't cost-e�ective in massively parallel
con�gurations unless the problem size is astronomical in size.

17

| | | | | | | | | | | |

|
|

|
|

|
|

|
|

 Number of Processors

 M
em

or
y

C
os

t (
D

be
)

Alewife

J-Machine

CM-5
Cray T3D

100 101 102 103 104 105 106 107 108 109 1010 1011

105

106

107

108

109

1010

1011

1012

106 107 108 109 1010

Figure 7: Per-node memory cost versus number of processors for the ensemble analysis over �ve
di�erent problem sizes from 106{1010. Dashed lines show per-node memory cost for four existing
machines.

9 Conclusion

This paper provides a framework upon which engineers can reason about the design of parallel
processors. The framework uses a \blc mpP" machine characterization that considers processing,
memory, local and global communication, and latency as separate machine resources. This is a
unique characterization of machine space since it captures the e�ects of locality by treating local
and global communication separately. The framework recognizes the importance of balance in
good design, and integrates this idea with a cost and performance model to provide a useful
design tool. We feel this is an important tool because it allows design to be driven by analysis
rather than by rules of thumb which often lead to unoptimized designs. Having provided this
framework, this paper arbitrarily chooses a diverse application suite in order to exercise the
model and to address some general questions in parallel computer design.

One question addressed by the results obtained from our model is the feasibility of a general-
purpose parallel computer. Reassuringly, our model predicts that general-purpose machines
are possible, at least for the application suite we chose. Evidence for this can be found in the
ensemble results. There are cost regions in which it is possible to build a machine that is close
to optimal for all the applications that we studied. Unfortunately, the costs for these machines
are mostly above the cost range for existing parallel computers. In the cost regions where
performance is poor, we saw two factors that degraded ensemble performance. At low-budgets,
the needs of applications with large memory requirements take money away from building more
processing nodes for less memory-bound applications. At extremely high budgets (although
granted, we may never see machines this big), there is a conict between applications with
good locality, and those with poor locality. Applications that are scalable prefer large machine
sizes. Applications that have unscalable communication patterns cannot a�ord the investment
needed in reducing global latency to support large machines. When it is not possible to ful�ll the
needs of di�erent applications given a budget, and the designer has some knowledge about which

18

applications are most important, it may be wise to give up the hope of building a general-purpose
machine and to drive the machine design in an application-speci�c manner.

The second question our model addresses pertains to node grain, and in particular, the
amount of per-node memory in a cost-e�ective design. We �nd that the CM-5 and Cray T3D,
for reasonable problem sizes, are cost-e�ective at relatively small machine sizes, 10s to low 100s
of processors. If these node architectures were to be used in a moderately to massively parallel
machine, far too much of the total machine budget would be spent on memory. These machines
are, however, cost-e�ective at large machine sizes if they are used to run extremely large problem
sizes.

19

A Comprehensive List of Notation

p processing power per node (operations/cycle).
m memory size per node (words).
c communication bandwidth per node (words/cycle).
b global communication bandwidth per node (words/cycle).
l communication latency per node for zero-length global message (cycles).
P number of nodes.
N problem size

V A machine con�guration vector: P; p;m; c; b; l.
Ve Machine con�guration giving the highest e�ciency (performance/cost).
Vk(k) Machine con�guration giving the highest performance on a set of problems

for a given cost, k.
VT (T) Machine con�guration giving the lowest cost on a set of problems for a

given performance, T .
K(V) Cost of a given machine con�guration, V (in DRAM bit equivalents or

Dbe).
Kn(p;m; c) Cost of a node with con�guration, (p;m; c) (Dbe).
Km(m) Cost of memory with capacity m (Dbe).
Kp(p) Cost of a processor with performance p (Dbe).
Kc(c) Cost of communications with bandwidth c (Dbe).
Kb(b) Cost per node of global communication with bandwidth b (Dbe).
Kl(l) Cost of supporting communication latency l per node (Dbe).
kmin Minimal machine cost (Dbe).
kp = kc = kb = kl cost of a unit of logic area (Dbe).
Kps processor cost factor, cost of reaching (1 � e) of saturation performance

(Dbe).
Kms memory cost factor, cost of one word of memory (Dbe).
Kcs communication cost factor, the area in DRAM bits of one word of I/O pads

(Dbe).
Kbs global bandwidth cost factor, cost of one word per cycle of global bandwidth

(Dbe).
Kls latency cost factor, cost of one cycle of latency (Dbe).

Bm base cost of memory (Dbe).
Bp base size of processor (Dbe).
Bc base size of local communications component (Dbe).
Bb base size of global communications component (Dbe).

R(N;P) requirements vector for an application.
Rp(N;P) required number of processing operations per node.
Rm(N;P) required amount of memory words per node.
Rc(N;P) required number of words of local communication per node.
Rb(N;P) required number of words of global communication per node.
Rl(N;P; V) latency inherent to the computation.

W Wordsize (bits)
T The amount of time required to solve a set of problems (cycles).
Te The amount of time required by the optimal machine con�guration, Ve, to

solve a set of problems (cycles).
Tmin The minimal time to solve a set of problems by any machine con�guration

(cycles).
Tmax The time required by the minimal machine con�guration to solve a set of

problems (cycles).

20

B Input Parameters for Several Applications

The global bandwidth and latency calculations in the following examples assume that the net-
work is a k-ary n cube.

B.1 Jacobi-2D

For Jacobi-2D, the problem related functions are:

Rp = 4 + 4N=P

Rc = 8

s
N

P

Rm = 4 +
N

P

Rb = 2

p
N

P

Rl = 1

B.2 Blocked FFT

For blocked FFT, the problem related functions are:

Rp = 3

�
1 +

N

P

�
log2N

Rc = 4
N

P
log2N=log2(N=P)

Rm =
N

P
log2N

Rb = Rc = 4
N

P
log2N=log2(N=P)

Rl = nP 1=nlog2N=log2(N=P)

B.3 N Body

For the N body problem, the problem related functions are:

Rp = 2
N2

P

Rc = 2

�
N � N

P

�

Rm = 1 +
N

P

Rb =
N

P

Rl = nP 1=n

21

B.4 Blocked Matrix Multiply

For blocked matrix multiply, the problem related functions are:

Rp = max

"
2
N3

P
; 1 + log2N

#

Rc = 3
N2

P 2=3

Rm =
N2

P 2=3

Rb =
N2

P

Rl = P 1=6

References

[1] Charles L. Seitz, Nanette J. Boden, Jakov Seizovic, and Wen-King Su. The Design of the
Caltech Mosaic C Multicomputer. Research on Integrated Systems, Proceedings of the 1993

Symposium, The MIT Press. Cambridge, Massachusetts, 1993. pp. 1-22.

[2] Peter R. Nuth and William J. Dally. The J-Machine Network, Proceedings of the 1992

IEEE International Conference on Computer Design: VLSI in Computers and Processors,
October 1992. pp. 420-423.

[3] Charles L. Seitz and Wen-King Su. A Family of Routing and Communication Chips Based
on the Mosaic. Research on Integrated Systems, Proceedings of the 1993 Symposium, The
MIT Press. Cambridge, Massachusetts, 1993. pp 320-337.

[4] H. T. Kung. Memory Requirements for Balanced Computer Architectures, IEEE 1986. pp.
49-54.

[5] Thomas J. Holman and Lawrence Snyder. Architectural Tradeo�s in Parallel Computer
Design. Advanced Research in VLSI, Proceedings of the 1989 Decennial Caltech Conference,
The MIT Press. Cambridge, Massachusetts, March 1989. pp. 317-334.

[6] Paul Chow The MIPS-X RISC Microprocessor, Kluwer Academic Publishers, August 1989.

[7] William J. Dally Architecture of a Message-Driven Processor, Proceedings of the 14th

Annual Symposium on Computer Architecture, June 1987, pp. 189-196.

[8] William J. Dally and Charles L. Seitz. The Torus Routing Chip, Distributed Computing,
Volume 1. pp. 187-196.

[9] Anant Agarwal, David Chaiken, Godfrey D'Souza, Kirk Johnson, David Kranz, John Kubi-
atowicz, Kiyoshi Kurihara, Beng-Hong Lim, Gino Maa, Dan Nussbaum, Mike Parkin, and
Donald Yeung. The MIT Alewife Machine: A Large-Scale Distributed-Memory Multipro-
cessor. Proceedings of the Workshop on Scalable Shared Memory Multiprocessors. Kluwer
Academic Publishers, 1991. Also appears as MIT/LCS Memo TM-454, 1991.

22

[10] William J. Dally et al. The J-Machine: A Fine-Grain Concurrent Computer, Proceedings
of the IFIP (International Federation for Information Processing), 11th World Congress,
Elsevier Science Publishing, New York, 1989. pp. 1147-1153.

[11] CM5 Technical Summary, Thinking Machines Corporation, Cambridge, MA. Oct, 1991.

[12] CRAY T3D System Architecture Overview, Cray Research, Inc. Revision 1.C, September
23, 1993.

[13] Keith Diefendor� and Michael Allen. Organization of the Motorola 88110 Superscalar RISC
Microprocessor, IEEE Micro, Volume 2, Number 2, April 1992. pp. 40-63.

[14] Dennis Allison and Michael Slater. National Unveils Superscalar RISC Processor, Micro-

processor Report, Volume 5, Number 3, February 20, 1991.

[15] Daniel Dobberpuhl et. al. A 200 Mhz 64b Dual-Issue Microprocessor, IEEE Solid State

Circuits Conference, Volume 35, February 1992. pp. 106-107.

23

