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Abstract

A multitude of interesting applications require multicast over wide-area networks. As these appli-
cations grow in popularity, issues concerning scalability of the underlying protocols that support both
unreliable and reliable multicast become important. This paper makes several intellectual contributions
related to scalable multicast protocols. First, we present a model that captures the essential network and
application parameters. The model enables the direct comparison of di�erent unreliable multicast rout-
ing algorithms under a single consistent framework. Second, we use the model to conduct an in-depth
analysis of four existing unreliable multicast routing algorithms. Among our �ndings is the somewhat
surprising result that link-state multicast protocols are scalable under certain conditions because data
message cost dominates control message cost, even when groups are sparse, and group membership is
dynamic. Third, the paper presents an analysis of the cost of reliable multicast in two competing pro-
tocols. We identify NACK suppression as a problem for reliable multicast. Finally, we propose a novel
solution for the suppression of multicasted NACKs that is implemented at the network level, and suggest
directions for future research in this area.

1 Introduction

Multicast communication over wide-area networks is proving to be an important network service. A
multitude of interesting applications demand wide-area multicast, including internet TV/radio, video/audio
conferencing, and distributed interactive simulation, just to name a few. While there is already very high
interest in the MBone [9], the Internet's version of multicast, this is only an early indication of the future
popularity for applications requiring multicast.

As the demand for multicast in networks increases, the question of scalability needs to be addressed.
Protocols that support both unreliable and reliable multicast over wide areas have the potential for con-
suming enormous amounts of bandwidth. As network size, group size, and application bandwidth scale, it
is easy for a multicast protocol to bring a network to its knees. Therefore, it is important to understand
how scaling various network and application parameters impacts di�erent multicast protocols.

This paper explores scalability issues in both unreliable and reliable multicast, relying heavily on anal-
ysis to provide intuition. The paper makes several contributions. First, a model is introduced for reasoning
about unreliable multicast protocols. The model considers both network and application parameters, and
enables a direct comparison of di�erent protocols under a single consistent framework. Second, we use
the model to study the scalability of four proposed unreliable multicast protocols. A somewhat surprising
result is that link-state protocols are scalable under certain conditions because data message cost domi-
nates control message cost, even when groups are sparse, and group membership is dynamic. Third, the
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paper provides an in-depth comparison of two existing reliable multicast protocols, and identi�es NACK
suppression as a problem for reliable multicast. Finally, we propose a novel solution for the suppression of
multicasted NACKs that is implemented at the network level.

Section 2 discusses unreliable multicast, and Section 3 discusses reliable multicast. We conclude the
paper in Section 4.

2 Unreliable Multicast

This section discusses unreliable multicast communication over wide-area networks. Section 2.1 presents
our assumptions, and Section 2.2 gives some background on existing routing techniques. Section 2.3
presents a model to reason about the cost of unreliable multicast, and Section 2.4 uses the model to study
the scalability of the techniques described in Section 2.2. Section 2.5 then discusses other scalability issues
not captured by our model, and Section 2.6 summarizes the �ndings in our analysis.

2.1 Assumptions

We are concerned with unreliable multicast routing across point-to-point links at the internet level. We
assume that protocols exist for gateways to acquire membership information from hosts in their subdomains
(for instance, the protocol in [6]), and that there are separate protocols for forwarding multicast packets
from gateways to hosts at the local-area level. Also, we assume that logical addressing is used so that
senders need not worry about the existence of group members.

2.2 Routing Algorithms for Unreliable Multicast

This section describes, brie
y, four algorithms for multicast routing: Reverse Path Multicast (RPM),
Link-State Multicast, Core-Based Trees (CBTs), and Protocol Independent Multicast (PIM).

2.2.1 RPM

Reverse Path Multicast (RPM) relies on distance vector routing to form multicast distribution trees. In
a distance vector routing algorithm, the routing tables in each router consists of distance vectors. Each
routing table entry contains a destination, its distance from the router, and the outgoing link used to reach
the next hop along the shortest path to the destination [13]. A unicast packet is routed by �nding the
distance vector corresponding to its destination, and then forwarding the packet through the outgoing link
speci�ed in the distance vector. For multicast routing, source-rooted shortest-path trees (SPTs) can be
formed from the same routing tables used for unicast routing [5]. Given a source, any router can determine
its parent and children nodes in the SPT rooted at the source in the following way. The parent node is
simply the router found in the next hop towards the source, and the children are the routers who's next
hop to the same source is the given router. A tree formed in such a way is known as the shortest-path

reverse tree. RPM uses this tree to copy and forward multicast packets.

The problem with reverse-path trees is that routers have no knowledge of which children links lead to
group members. This can result in many wastefully forwarded messages. In RPM, gateways at the leaves
keep track of group membership information for the local networks that are connected to the gateway. The
gateway sends prune messages up the reverse-path tree if they receive multicast messages for which they
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have no members [8]. However, this does not solve the problem of wasteful messages. In order for group
members to \learn" about the existence of new sources, any pruned branch must periodically time out so
that a multicast from a new source can make its way down to the leaves and \announce" itself [27]. This
is necessary because in source-rooted trees, there is a di�erent tree for every source.

2.2.2 Link-State Multicasting

One problem with distance vector routing is that it is unstable in large networks during network topology
recon�guration [17]. This has motivated the proposal of a new method of routing, called link-state routing.
In link-state routing, each time a link goes down or comes up, a broadcast to the entire network occurs
notifying all routers. Therefore, all routers have global knowledge about the network topology.

Adding multicast to link-state routing is easy: just make group membership part of the link state that
gets broadcasted. This way, routers have global knowledge about group membership as well. Each router
has all the information necessary to compute the SPT given any source and any set of group members.
MOSPF [19] is such a link-state multicast protocol.

Because every router in a link-state protocol has global group membership knowledge, wasteful copying
and forwarding of multicast packets down links that do not lead to group members can be avoided. The
disadvantage of link-state protocols is that the computation of SPTs can be expensive, especially since
there are S�N trees, where N is the number of groups, and S is the number of sources per group. Instead
of computing all possible trees, the trees are typically computed on demand and cached. This in
icts a
longer latency to the �rst multicast packet that traverses a new tree. Also, link-state protocols can be
expensive because each time a group member joins or leaves the group, a broadcast to the entire network
occurs.

2.2.3 CBTs

A problem with shortest-path trees is that there is a di�erent distribution tree for every group, and every
source in the group. Therefore, the router state needed to track these trees (in MOSPF, for instance) grows
as S�N . To address the scalability problem this presents, Core Based Trees (CBT) has been proposed [2].
The idea is that each group, regardless of the number of sources, uses a single shared tree for multicast
distribution, rooted at a �xed and agreed upon router, called the \core." During a multicast, a source
sends a multicast packet to the core. This packet is routed without any copying. When a multicast reaches
the core, it is delivered to all group members through a single shared tree rooted at the core that spans all
group members.

CBTs have the advantage that sources and receivers can easily \�nd" each other because there is a
�xed core. Sources' multicast packets are automatically forwarded to the core, and receivers that want to
subscribe simply send join messages towards the core. Also, CBTs provide very good \information hiding."
That is, only routers that are a part of a distribution tree are burdened with messages related to that tree.
This is not the case with RPM or MOSPF. The disadvantage of CBTs is that the average path length from
source to receivers is typically longer than in an SPT. Also, if there are many sources, all their packets
are funneled through the core, potentially causing congestion. Known as \bandwidth concentration," this
e�ect is less severe in SPTs because each source has its own distribution tree.
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2.2.4 PIM

Protocol Independent Multicast (PIM) [7] combines shortest-path trees and shared trees. PIM recognizes
that SPTs have good path delay and bandwidth concentration characteristics. On the other hand, shared
trees make it easy for sources and receivers to \�nd" each other, and have good information hiding charac-
teristics. In PIM, there is a �xed router that initiates multicast between a source and a group of receivers.
This router is called the \rendezvous point" (RP), and is analogous to the core in CBTs. Receivers join
a group by sending join messages to the RP. Sources always multicast to the RP, so new receivers will
begin receiving multicast packets from all existing sources via a shared tree rooted at the RP. When a
receiver starts getting multicast packets, it can decide to switch over to a shortest-path tree by sending a
join towards the source. When the source receives such a join request, it starts sending multicast packets
through the shortest-path tree. The shared tree originally used to reach the receiver is pruned once the
receiver has switched to an SPT.

PIM is largely successful at achieving the advantages of both tree types. However, it still has the S�N
routing state scaling in the routers, and there is the problem of choosing RPs. Also, the RPs can be a
point of failure. A solution is to replicate RPs, but this presents more complexity to the protocol.

2.3 A Framework for Reasoning about Unreliable Multicast

Existing multicast routing algorithms are very di�erent. Each makes several tradeo�s in how distribution
trees are maintained, and how multicast packets are forwarded. While any one tradeo� is simple to
understand, the interplay of several tradeo�s can be very unintuitive. No framework exists to enable an
understanding of the sum total of all these e�ects at once.

We present an analytic model that captures the essential parameters, both in the network and in the
application, that a�ect the performance of unreliable multicast routing algorithms. The model allows a
direct comparison under a consistent framework of the algorithms discussed in Section 2.2. We use the
model to focus on scalability. The model presented in Section 2.3.1 only deals with unreliable multicast;
analysis of reliable multicast is discussed later in the paper.

2.3.1 The Model

Our model measures the communication cost of a multicast routing algorithm in terms of the total
bandwidth consumed in the network by the routing algorithm. Our notion of cost is similar to the work
in [29]; however, our model is novel because it considers the cost of maintaining multicast distribution
trees, as well as the cost of transferring data. We express cost as:

msgCost = Ccntrlfcntrl + (Ctree + Cnm)BWsend (1)

The �rst term in Equation 1 expresses the control messaging cost, while the second term expresses the
data messaging cost. Control and data messaging costs are de�ned as follows:

Control Message Cost. Control messages are exchanged between network routers to disseminate group
membership information. Ccntrl is the total number of point-to-point messages communicated each
time a member joins or leaves the group. fcntrl is the frequency at which members join or leave. 1

1We assume that a group reaches a steady-state in which the number of joins and departures balance. Therefore, the group
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Data Message Cost. Data messages consist of all the messages that carry data from a multicast
application. For every multicast message injected by an application, there is some number of point-
to-point messages that traverse the network due to copying and forwarding at each intermediate router
between the source and all the receivers. This number is Ctree + Cnm. A point-to-point message is
counted in the Ctree component if it leads to at least 1 group member downstream; otherwise, it is
counted in the Cnm (non-member) component. BWsend is the multicast rate of the application.

In our model, total bandwidth cost is measured as messages per second. As a simpli�cation, we assume
that all messages have the same size. Applications that multicast large data messages can be modeled by
a higher BWsend parameter. Also, the model assumes an ideal network with in�nite bandwidth so that no
queuing or blocking occurs at any of the router nodes.

fcntrl and BWsend are application parameters, while Ccntrl, Ctree, and Cnm are di�erent for each routing
algorithm. We describe the derivation for the MOSPF protocol here, and provide the derivation for RPM,
CBT, and PIM in Appendix A.

The number of control messages for MOSPF is given by:

CMOSPF
cntrl = N(�� 1) (2)

Each time a member joins or leaves the group, MOSPF broadcasts this information by 
ooding. At
each router, the 
ooding algorithm sends a message out every outgoing link except for the direction from
which the message came in. Therefore, there are ��1 messages sent at each router, where � is the average
node degree. Since there are N routers, we have Equation 2.

The cost of distributing data messages that lead to group members in MOSPF is:

CMOSPF
tree = CSPT (N;G) (3)

Given a network, N , and a group, G, CSPT (N;G) is the number of point-to-point messages needed
to multicast to G using a shortest-path tree rooted at the sender, averaged over all possible senders in
G. There is no simple expression for CSPT (N;G) as it is highly dependent on the particular topology
of the network, the size of the group, and the location of group members. In our study, we compute
CSPT (N;G) in the following manner. Given a network topology and a group size, we randomly place
the group members, choose a sender, and compute the cost of the shortest-path tree. We do this for all
possible choices of senders for a given group placement, and for several random placements of the group.
CSPT (N;G) is the average over all such shortest-path tree costs.

Finally, because MOSPF has global knowledge about group membership at each router, it can avoid
sending messages down links that do not lead to group members. Therefore, there is no Cnm component
in MOSPF:

CMOSPF
nm = 0 (4)

2.4 Analyzing Scalability Using the Model

In this section, we use the model presented in Section 2.3.1 to investigate the impact on cost to each of
the routing algorithms when the following parameters are scaled:

size remains the same, but each join or departure still incurs control message overhead.
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Number of Nodes 200
Average Node Degree 3.79
Diameter 11
CSPT (N200; G10) 26.63, � = 2.70
CSPT (N200; G160) 145.49, � = 3.97
CCBT (N200; G10) 24.52, � = 2.46
CCBT (N200; G160) 140.60, � = 4.24

Table 1: Statistics on the 200-node random graph. For all distribution tree cost calculations, the average
is given along with the standard deviation, �.

� Application bandwidth, by increasing BWsend.

� Group sparseness, by decreasing jGj
jN j .

� Join/leave frequency, by increasing fcntrl.

� Flood duty factor, by increasing floodduty.
2

� Network size, by increasing j N j.

We begin our analysis by considering a medium-sized network consisting of 200 routers. A random
network of 200 nodes was generated using the method described in [28], and the average cost for shortest-
path trees and core-based trees was computed. We assume each router is attached to a local-area network
with multiple hosts that can subscribe to a group. If a router has at least 1 local host subscription, we
count the router as a single group member at the internet level. Table 1 shows some statistics describing
this graph. Originally, we conducted our analysis on a smaller network, the 1976 Arpanet, which consists
of 59 nodes. We found that the scaling issues we study do not matter in such a small network, and omit
the results in the interest of space.

Figure 1 shows how the routing algorithms scale with application bandwidth on networks with dense
groups. We plot the messaging cost, Equation 1, as a function of application bandwidth for each of the
routing algorithms. The group size is 160 nodes with members, and the join/leave rate is low, 1 join/leave
every 10 seconds. Also, the 
ood duty for RPM has been set to 0.01, meaning that RPM does broadcast
1% of the time.

The only visible di�erence (and barely at that) is the di�erence in slopes between the curves for MOSPF,
RPM, and PIM as compared against the curve for CBT. This is because MOSPF, RPM, and PIM all use
shortest-path trees which are slightly more costly than the optimal-delay core-based tree used by CBT, as
shown in Table 1. Therefore, in our model, CMOSPF

tree , CRPM
tree , and CPIM

tree are slightly higher than CCBT
tree .

This di�erence is extremely small and causes less than 1

10
of one percent di�erence in cost between all the

algorithms.

There are two surprises in Figure 1. First, the broadcast of group membership in MOSPF each time a
host joins or leaves the group has no measurable e�ect. For our 200 node network, each join/leave costs
MOSPF 558 point-to-point messages. This does not signi�cantly impact the overall cost of MOSPF because
the join/leave frequency is low, 1 every 10 seconds, and thus joins/leaves generate very few messages relative
to the number of data messages generated by the application. Second, the periodic 
ooding that occurs

2floodduty is the fraction of time RPM spends broadcasting instead of multicasting. For an explanation, see appendix

Section A.1.
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Figure 1: Performance of unreliable multicast
on a 200-node graph. Group size = 160, fcntrl
= 0.1, floodduty = 0.01.
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Figure 2: Performance of unreliable multicast
on a 200-node graph. Group size = 10, fcntrl
= 0.1, floodduty = 0.01.

in RPM has no measurable e�ect either. In a dense group, the cost of reverse-path broadcast is not much
higher than the cost of a multicast since most of the network nodes are already involved in the multicast.
Furthermore, the 
ooding duty factor, 1%, is small, so the broadcast happens infrequently.

Figure 1 shows that the protocols have comparable scaling when the group is dense, the join/leave
frequency is low, and the 
ood duty factor is low. In the remainder of our study, we will relax these
assumptions. We start by looking at sparse groups. In Figure 2, all things stay as they were in Figure 1
except that group size is reduced from 160 nodes to 10 nodes. The e�ect is that the slopes of all the graphs
are spread a bit more. MOSPF and PIM have a higher slope than CBT because of a greater cost di�erence
between SPT-based trees as compared against CBT-based trees under low density (see Table 1). RPM is
also impacted by the higher relative cost of shortest-path trees, but in addition, RPM pays a higher cost
for periodically 
ooding. When the density of groups is low, there is a signi�cant cost di�erence between
a broadcast and a multicast, which was not the case for dense groups.

Although there is a larger di�erence between the protocols as compared to Figure 1, the di�erence
is still small, only about 17% separating the best and worst costs. While many claim that MOSPF and
RPM are not feasible in sparse groups [7, 2], our analysis shows that they are competitive when join/leave
frequency and 
ood duty are small.

The cost of MOSPF and RPM is controlled by keeping join/leave frequency and 
ood duty small. What
happens when these assumptions are relaxed? In Figure 3 the join/leave frequency has been increased to
10 joins/leaves per second, and the 
ooding duty factor to 10%. First, we notice that MOSPF has a large
�xed overhead. At 10 joins/leaves per second, MOSPF is paying 5580 control messages per second just to
keep track of the membership information. At small application bandwidths, this cost dominates, but as
application bandwidth increases (and the join/leave frequency remains constant), the impact becomes less
and less signi�cant, down to about 35% at BWsend = 1000 msgs/sec. We have also noticed that a high
join/leave frequency does not impact MOSPF in dense groups, but we omit this analysis in the interest of
space.
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Figure 3: Performance of unreliable multicast on a 200-node graph. Group size = 10, fcntrl = 10, floodduty
= 0.1.

The cost of a high 
ood duty factor to RPM is more severe. When the 
ooding duty factor is 10%,
the cost of 
ooding is almost double the cost of multicasting. RPM maintains a steady 80% higher cost
as compared against CBT and PIM. An interesting point is that there is a cross-over between the costs of
MOSPF and RPM where the join/leave frequency impacts MOSPF the same amount as the 
ooding cost
impacts RPM.

Thus far, our analysis has shown that CBT and PIM scale well in both dense and sparse groups,
while MOSPF and RPM remain competitive only under certain conditions. We now focus on MOSPF
and RPM, and see under what conditions they remain competitive on a large network with 10,000 routers.
Unfortunately, the computation of CSPT (N;G) and CCBT (N;G) become intractable when the network
size and group size are large. Since we are interested in sparse groups, as this stresses the protocols the
most, we consider j G j� 10; 000 and make the assumption that CSPT (N10;000; G) � CSPT (N200; G) and
CCBT (N10;000; G) � CCBT (N200; G) for j G j� 200. 3

Figure 4 shows the behavior of MOSPF in a 10,000 node network with a group size of 160. Normalized
message cost is plotted against group join/leave frequency for three application bandwidths on a semi-log
scale. The normalization factor is the message cost of the CBT protocol at the same join/leave frequency,
and the same application bandwidth. Figure 4 shows two interesting points. First, the message cost does
not blow up when the application bandwidth is high. When application bandwidth is high, join and leave
events are insigni�cant, even when they're frequent, because data message cost dominates control message
cost. Second, when application bandwidth is moderate, the only way to keep MOSPF from blowing up in
sparse groups is to keep the join/leave rate very low. For low application bandwidths, MOSPF is unscalable
in large networks.

Figure 5 shows the behavior of RPM under the same network and group size. We plot normalized
message cost versus the 
ood duty factor using the same normalization method used for MOSPF. The
shape of this curve is independent of application bandwidth since when RPM uses broadcasting, the
bandwidth consumed is proportional to the application bandwidth. Figure 5 shows that message cost for

3Notice this assumption is pessimistic towards MOSPF and RPM. In e�ect, the assumption makes the group membership

look even more sparse because for the same number of group members, the distribution tree in the 10,000 node graph will in

actuality be larger than for the 200 node graph.
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Figure 4: Normalized message cost versus
group join/leave frequency for several appli-
cation bandwidths in MOSPF. Network size
= 10,000 nodes, group size = 160.
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Figure 5: Normalized message cost versus

ood duty factor for in RPM. Network size
= 10,000 nodes, group size = 160.

RPM can be managed in large networks only by keeping the 
ood duty factor very small.

2.5 Other Scalability Issues

There are two important scalability issues not considered by our model. The �rst is the scalability of
router table state. RPM and CBT impose the least space requirements on router tables. In RPM, the
shortest-path tree is computed by computing the shortest reverse-path tree. The shortest reverse-path tree
can be derived from a standard routing table used by distance-vector routing [8], thus, there is no added
cost for multicast. RPM does incur routing state costs for tracking pruned branches. In CBT, each router
records the children it must copy and forward a multicast packet to. Since there is only one tree per group
in CBT, the router table state grows in proportion to the number of groups. PIM makes somewhat higher
demands on router table state. The problem is that shortest-path trees are di�erent depending on where
the sender is located. Therefore, the amount of state required to track all trees is proportional to the
product of the number of groups, and the number of senders in each group. Finally, MOSPF has the same
routing table scaling as PIM. In addition, MOSPF must record the entire group membership information
for each group at every router.

Our model assumes that there is in�nite bandwidth on every link in the network, and measures costs in
terms of total bandwidth consumed. When bandwidth is limited, or when di�erent links o�er very di�erent
bandwidths, it is important to talk about maximum bandwidth on a per-link basis. In general, core-based
trees have worse maximum bandwidth load because of the bandwidth concentration e�ect described in
Section 2.2.3. If there are multiple senders, the accumulated bandwidth at the root of the shared tree
can be high. Our model does not penalize CBTs for bandwidth concentration. Furthermore, protocols
like MOSPF that send control messages to every corner of the network can adversely impact parts of
the network with \weak links." Our model only considers the total bandwidth consumed by such control
messages. Our model can be changed to account for bandwidth on a per-link basis. For instance, the cost
of a message on a point-to-point link can be weighted by some function of the number of other messages
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sharing the link, and by the fraction of bandwidth that can be reasonably supported by the link that has
been consumed.

2.6 Summary of Scalability Study

In this section, we have developed an analytic model that allows us to reason about the cost of di�erent
unreliable multicast routing algorithms. Through the use of our model, we have learned the following
about the scalability of four existing multicast routing algorithms:

� The di�erence in cost between SPTs and CBTs is small, although more signi�cant for sparse groups.
In any case, this discrepancy is a small issue in regards to scalability.

� MOSPF must be careful about join/leave frequency. However, the cost of broadcasting every join or
leave may be insigni�cant compared to data message cost. Data message cost will dominate control
message cost even if joins and leaves are frequent if application bandwidth is high, or in the case that
application bandwidth is moderate, if groups are dense. In situations where groups are sparse and
application bandwidth is low, MOSPF is competitive only if join/leave frequency is low. MOSPF
does have adverse e�ects in corners of the network with \weak links." Our model does not capture
this e�ect, but can be extended to account for di�erent per-link bandwidths.

� RPM must be careful about 
ooding duty factor. In dense groups, this is not an issue because a
broadcast is similar in cost to a multicast. In sparse groups, RPM is competitive only if the 
ood
duty factor is low.

� CBT scales well under all our analyses. Since our model considers only total bandwidth, the result
for CBT must be quali�ed by considering bandwidth concentration. If the number of senders is large,
the core may become a bottleneck making CBT unscalable. An extension to our model could provide
this analysis.

� PIM scales well under all our analyses. PIM gets good marks because it scales well and allows the
use of shortest-path trees for multicast.

3 Reliable Multicast

This section discusses reliable multicast communication. Section 3.1 brie
y describes our assumptions for
reliable multicast. Section 3.2 then describes two competing approaches, and Section 3.3 compares them.
Finally, Section 3.4 proposes network-level mechanisms to help receiver-reliable schemes address the NACK
suppression problem.

3.1 Assumptions

There is a large body of work on reliable broadcast and multicast from the distributed systems commu-
nity [15, 3, 31]. These systems have traditionally operated over local-area networks, often with support
for broadcast in the network, and guarantee a high degree of reliability. We assume that for wide-area
multicast, the network should only provide a minimum degree of reliability: reliable delivery of packets, in
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any order, without a great concern for faults. The construction of stricter reliability guarantees is left up
to the application.

We also assume that the correct model of reliability for multicast is receiver reliability, as opposed
to source reliability. While both techniques have been used successfully in unicast communication [4, 21],
receiver reliability is better suited for multicast communication. The main reason is that receiver reliability
does not issue positive ACKs for every packet sent, but instead, only negatively ACKs those which have
been detected to have been lost. This avoids the well-known \ACK implosion" problem. (For more
information, see [20]).

3.2 Receiver-Reliable Multicast Techniques

3.2.1 LBRM

Holbrook et. al. propose a receiver-reliable scheme known as Log-Based Receiver-Reliable Multicast
(LBRM) [14]. In log-based receiver reliability, a source multicasts to the group, and uses periodic heartbeats
so that receivers can distinguish between lost packets and an idle sender. At the same time, it reliably
unicasts (using source-reliable unicast) the same packets to a centralized logging server. Once the source
has reliably sent a packet to the logging server, it can discard it from its bu�er. The logging server has the
resources to maintain a log of all packets sent by the source. A receiver that detects lost packets, either by
noticing a missing sequence number or by not receiving any packet for a heartbeat interval, sends a NACK
for the missing packet(s) to the logging server which is responsible for retransmitting any lost packets.
Because wide-spread loss of a multicast can happen if a packet is lost near the root of the distribution tree,
there is a potential for \NACK implosion" at the central logging server. LBRM proposes two optimizations
that address the NACK implosion problem.

The �rst optimization replicates the central logging server, known as the \primary server," and places
a \secondary server" at each domain site. The secondary servers receive multicasts (possibly unreliably)
through the normal distribution tree, and logs them. When a receiver detects a lost packet, it requests a
retransmit from the secondary server in its local domain instead of going to the primary server. The local
secondary server tries to satisfy the retransmit. If it can't because it didn't reliably receive the packet
itself, it sends a single NACK to the primary server regardless of the number of NACKs it gets from the
domain. The secondary server provides two bene�ts. First, it prunes NACKs to the primary server since
at most one NACK is sent from each domain. Second, it reduces the average error recovery latency seen
by receivers since the round trip time (RTT) to a local secondary server is less than to the primary server.

The second optimization tries to select an appropriate retransmit strategy. The idea is that if the
loss of a packet is wide spread, it is more e�cient to retransmit via multicast; however, if a packet is
only lost by a few receivers, retransmits should be unicasted on demand. In the case that multicast is
chosen, if it is done early enough, the retransmit message can suppress NACK generation at many of the
receivers, thus preventing NACK implosion. Holbrook proposes to choose the retransmit strategy based
on statistical acknowledgments. A small group of secondary servers are selected at random, known as
\Designated Ackers." After a multicast, each Designated Acker immediately ACKs the multicast packet.
The number of ACKs that are received is used by the sender as a statistical indication of how widely the
packet was reliably received. If the number of ACKs is below a certain threshold, the sender retransmits
immediately using multicast. Otherwise, the sender waits for NACKs to arrive, and handles them using a
unicast retransmit strategy.
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3.2.2 SRM

Scalable Reliable Multicast (SRM) is proposed in [10] as a solution to reliable multicast for the distributed
whiteboard application. The contribution of SRM is a novel NACK-retransmit strategy. In SRM, when
a receiver detects a lost packet, the NACK is multicasted to the entire group. Subsequently, any group
member that has reliably received the NACKed packet can reply to the NACK, not only the sender.
Furthermore, the retransmit itself is multicasted to the entire group as well thus potentially satisfying
multiple NACKs at once. This approach distributes the retransmit responsibility amongst all the group
members; therefore, the number of hosts that can reply to a NACK naturally grows with group size.

By using multicast for both the NACK and the retransmit, SRM has potentially made the NACK
implosion problem worse in that everyone in the group can be 
ooded with NACKs, not just the sender.
There's a similar problem with retransmits since more than one host can decide to reply to a NACK.

SRM solves the NACK suppression problem in the following way. Because NACKs use multicasting
instead of unicasting, it is possible for a receiver that has lost a packet to suppress its NACK if it \hears" a
NACK for the same packet from another receiver. An identical technique can be used to suppress redundant
retransmits. The problem of a 
ood of multicasts can still happen if NACKs are issued simultaneously by
multiple receivers. SRM avoids this by desynchronizing NACK requests from di�erent receivers. When a
receiver wishes to issue a NACK, it sets a timer and issues the NACK only if the timer goes o�. Meanwhile,
if it \hears" a NACK for the same packet, it resets the timer with some backo�. An attempt is made to
skew di�erent timers by using a randomization technique. The hope is for only one timer to expire, and for
the NACK subsequently issued to suppress all other NACKs. The e�ectiveness of similar desynchronization
techniques are explored in [20].

3.2.3 Other Schemes

Other receiver-reliable schemes include Negative Acknowledgment with Periodic Polling (NAPP) [23], and
the Multicast Transport Protocol (MTP) [1]. We only mention them brie
y here because they were not
designed to scale to the extent that LBRM or SRM scale. NAPP multicasts NACK requests to allow
multiple receivers to track the status of all receivers. In addition, NAPP requires costive ACKs from all
receivers periodically (with a low frequency) so that the source can discard bu�ered packets that have
been received by all members. MTP also addresses source bu�ering issues simply by allowing the source
to discard packets after a certain interval has passed.

3.3 Analyzing LBRM and SRM

In this section, we take a closer look at the two schemes, LBRM and SRM, and provide insight into the
two approaches. Again, we focus on messaging cost in the network. We assume that some cost is incurred
for unreliable multicast, as described in Section 2.3. In this analysis, we want to know the additional cost
needed to add reliability.

To aid us in our analysis, we use a simple model for the reliable delivery of messages. We assume that
each member of a multicast group receives a message reliably with probability (1 � p); therefore, p is the
probability of loss at any given receiver. We assume that the reliable reception of a multicast message at
di�erent receivers are independent events. This is a simpli�cation that only models loss at the leaves of the
multicast distribution tree. In actuality, when a multicast message is lost, the entire subtree downstream
from the point of loss does not receive the message. However, studies on the MBone [32] have shown that
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most messages are lost in tail circuits leading to leaf gateways, not in the backbone. Let F be the the
number of receivers that do not reliably receive a given multicast. F is a random variable with a binomial
distribution:

P [F = n] =

 
j G j
n

!
(1� p)jGj�n pn (5)

We make the following simplifying assumptions. First, we only consider losses at the internet level,
and treat each gateway as if it were a single receiver. Second, we assume that the NACK and retransmit
suppression techniques used in SRM are perfect. That is, when a multicast is not reliably received by any
group member, there is exactly one NACK and one retransmit of the data. Third, we assume that the
statistical acknowledgment technique used in LBRM to guess the number of lost messages is perfect. That
is, the primary server knows exactly how many receivers did not receive the multicast reliably. Moreover, we
will assume that the messaging needed to implement the statistical acknowledgment technique is negligible.
Finally, we assume that all multicasts in both schemes use shortest-path trees.

We now write the expected message cost for reliability under the two schemes. For SRM, two multicasts
are transmitted (one for the NACK, and one for the retransmit) if at least one receiver does not reliably
receive the multicast, and zero messages are sent if all receivers reliably receive the multicast:

E [msgOvhdSRM ] = 2CSPT (N;G)P [F � 1] + 0P [F = 0]

= 2CSPT (N;G) (1� P [F = 0])

= 2CSPT (N;G)

 
1�

 
j G j
0

!
(1� p)jGj p0

!

= 2CSPT (N;G)
�
1� (1� p)jGj

�
(6)

For LBRM, there is a threshold, Tloss, that de�nes what the protocol will do. If the number of receivers
that did not reliably receive the multicast is less than Tloss, LBRM will service the NACKs one by one,
using unicast communication. In this case, there are two unicast messages sent per NACKing receiver (one
for the NACK, and one for the retransmit). We pessimistically assume that a unicast between a receiver
and the primary server traverses 1

2
diam(N) hops. If, however, the threshold is met or exceeded, a multicast

will be issued to suppress the generation of multiple NACKs. We have for LBRM:

E [msgOvhdLBRM ] =
Tloss�1X
n=1

2n
1

2
diam(N)P [F = n] +

jGjX
n=Tloss

CSPT (N;G)P [F = n]

= diam(N)
Tloss�1X
n=1

n

 
j G j
n

!
(1� p)jGj�n pn + CSPT (N;G)

jGjX
n=Tloss

 
j G j
n

!
(1� p)jGj�n pn (7)

In Equation 7, given a network, a group size, j G j, and a failure probability, p, it is possible to solve
for Tloss such that the message cost is minimized.

Figure 6 plots the messaging cost under SRM and LBRM for two di�erent per-receiver loss probabilities,
0.01 and 0.1, over a range of group sizes. The network topology we use is the same 200 node network
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Figure 6: Normalized messaging cost for reliability versus group size under SRM and LBRM on a 200 node
network. Per-receiver loss probabilities of 0.01 and 0.1 are plotted for each.

used in Section 2.3 to analyze unreliable multicast routing. For LBRM, we solve for the value of Tloss that
minimizes message cost given unique values of j G j and p. Each message cost value in Figure 6 has been
normalized by CSPT (N;G). Thus, the normalization value varies along the x-axis, but the same value is
used for all curves at a given point on the x-axis.

Figure 6 shows three interesting features. First, under the same loss probabilities, LBRM always has a
lower message cost than SRM. Second, the message cost for each scheme is asymptotic. The SRM scheme
approaches the value 2, while the LBRM scheme approaches the value 1. This is expected because in the
worst case, SRM sends 2 multicasts and LBRM sends 1 multicast. Finally, we �nd that the cost for LBRM
degrades much more gradually than for SRM. This is particularly visible when the loss probability is high:
SRM reaches its asymptotic value almost immediately, while in LBRM, the asymptote is reached only at
large group sizes. This is because in SRM, as long as there is one loss, the maximum overhead is incurred.
However, in LBRM, the protocol doesn't switch over to multicasting unless it is pro�table. When the
number of losses is small, unicasting is used.

While Figure 6 provides intuition, it is an idealized picture because of the assumptions made. In
actuality, the comparison is even worse for SRM. First, desynchronization between multiple NACK requests
and retransmits is imperfect, so the asymptote for SRM will be greater than 2, and depends on the group
size and network topology. Second, by treating each gateway as a single receiver, we have removed the
bene�t of cheaper recovery through a secondary server in LBRM. Receivers in LBRM can recover errors
through a local secondary server instead of going to the primary server if the secondary server has a reliable
copy. 4

SRM is hindered by the fact that it multicasts its NACKs and retransmits to every group member.
In an extension to SRM [11], Floyd et. al. are exploring \local recovery" in which the protocol tries to
learn the extent of lost packets, and then uses this information to limit the scope of multicasted NACKs so
that the multicast just reaches past the extent of lossage. This approach seems promising, but is currently
ongoing research.

4However, studies on packet loss indicate that many losses occur at the tail circuits from routers to gateways. In these

cases, the secondary servers will not reliably receive the packet and will have to go to the primary server.
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3.3.1 Error Recovery Latency

The analysis in the previous section suggests that LBRM is much more scalable than SRM, and this is
true when only considering message costs. However, the story is somewhat di�erent when considering error
recovery latency.

LBRM handles NACKs using �xed logging servers, and receivers reach the servers using a �xed reverse
path tree. Placing �xed logging servers at each subdomain optimizes for localized losses. As long as all
secondary servers reliably receive a multicast, any NACK can be satis�ed quickly by a local secondary
server. However, if a packet is not received by a secondary server, any NACK from its local domain must
wait an RTT to the primary server, even if a secondary server nearby (perhaps even a single hop away)
has a reliable copy of the packet. This will cause the error recovery latency to increase as the extent of
group members grows.

The distance between the receivers and the primary server in LBRM also negatively impacts its NACK
suppression methodology. LBRM uses statistical acknowledgment to trigger a multicasted retransmit
thereby suppressing an implosion of NACKs. Like the RTT su�ered by unicast recovery, there is an RTT
su�ered in statistical acknowledgment: the secondary server replies to the source as a designated acker, and
then, if the source determines a multicast is appropriate, the multicast makes its way from the source back
to the secondary server. The problem is that even if the source decides not to multicast the retransmit,
receivers must give the source the opportunity to do so; otherwise, the multicast from the source will be
too late to suppress an implosion of NACKs. In the case that recovery is accomplished via unicast, there
is an additional RTT for the unicasted NACK and retransmit. Therefore, recovery can take up to 2 RTTs
between the secondary servers and the primary server.

SRM has the potential for better scalability with respect to error recovery latency because it multicasts
NACKs, and allows any group member to provide the retransmit. In theory, SRM has an error recovery
time of 1 RTT between the receiver and the nearest reliable copy. However, this assumes that NACKs and
retransmits can be issued without delay. Unfortunately, SRM must be very careful about multiple NACKs
and retransmits since each is a multicast to the entire group. SRM uses randomized delay to desynchronize
multiple NACKs (retransmits) in the hope that the �rst NACK (retransmit) will suppress all others. Since
delay is inserted both before a NACK and a retransmit is issued, error recovery time can be signi�cantly
increased.

3.4 A Novel Network-Level Solution for Multicast NACK Suppression

From the discussion in Section 3.3, several problems related to supporting reliable multicast have been iden-
ti�ed. One di�cult problem is NACK suppression. LBRM does not adequately solve NACK suppression
because it requires an RTT between secondary servers and the source before error detection can occur.
SRM does not adequately solve NACK suppression because it inserts random delays to desynchronize
NACKS, and even then, desynchronization is imperfect and multiple NACKs occur.

We claim the di�culty in current schemes to handle NACK suppression stems from the solutions using
only the endpoints (i.e. the source and the receivers). The fundamental problem with an endpoint-based
solution is that receivers who want to issue NACKs must insert delay in order to �gure out when it's \o.k."
to issue the NACK. This limits the scalability of error recovery time.

We propose providing support for NACK suppression at the network level. We believe a receiver should
be allowed to issue a NACK immediately upon detection of a lost packet. It is then the responsibility of
the network to identify redundant NACKs as soon as possible, and drop them in order to prevent their
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Figure 7: Suppressing a multicasted NACK.
\S" nodes are sources, \R" nodes are routers,
and \M" nodes are group members.

Determine outgoing links;
Foreach incoming multicast packet {

S = all members reached;

Drop packet;
} else {

}
}

Foreach outgoing link i {

U

if (S

Forward packet through outgoing link i;

LINK_SET = empty;

LINK_SET) {

LINK_SET = LINK_SET U S;

Figure 8: Algorithm for suppressing multicast
NACKs.

further consumption of network bandwidth. Our technique is motivated by (but is very di�erent from)
combining (or gathering) that has been previously proposed in [12] and [22]. In the following, we discuss
a technique that will suppress multicasted NACKs; this technique would bene�t the SRM protocol.

All NACKs are given tags. These tags appear in the network-level header of the NACK message.
NACKs for the same lost packet have the same tag value. Switches in the network examine this tag
value and maintain a tag cache of recently seen tags. Each time a message arrives at the switch, the tag
is extracted, and the tag cache is probed. Based on the contents of the tag cache, the switch decides
whether to forward the packet, or to drop the packet. A timeout mechanism can be employed for cache
entries so that tag values can be recycled. Notice that di�erent NACKs, whether they are new NACKs or
retransmissions of lost NACKs, must use di�erent tag values. Old tag values cannot be reused until it is
certain that these tags have timed out in all the tag caches; otherwise, NACKs will be dropped incorrectly.

Suppression of multicasted NACKs is tricky, especially if shortest-path trees are used. Figure 7 illus-
trates the di�culty. Two sources, S1 and S2, multicast a NACK simultaneously to members M1 and M2.
The shortest path to M2 from both S1 and S2 pass through router R2; however, the shortest path to M1
for S1 is through router R3, while for S2, the shortest path is through router R4. At router R2, there is
an opportunity to drop a multicast packet. If S2's multicast packet arrives �rst followed by S1's multicast
packet, it is safe to drop S1's packet since S2's packet will reach both M1 and M2. However, if instead S1's
multicast packet arrives �rst, it is not clear that S2's multicast packet can be dropped. Doing so should
be allowed only if it is known that S1's packet to M1 is not dropped at router R3 (due to, for instance, a
multicast from a third source not shown).

To safely drop a multicast NACK, a router must determine that all members in the subtree reached by
the NACK will receive the NACK from another multicast that has not been dropped. Figure 8 presents a
conservative algorithm for suppressing multicast NACKs. The algorithm assumes each router has global
membership information. In the algorithm, each router keeps track of all the multicasts that have passed
through the router without being dropped, and records the group members reached by these previous
multicasts. For each new multicast that arrives, it considers each outgoing link the multicast packet is to
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be copied and forwarded along. For a particular outgoing link, if the members reached through the link are
covered by previous NACKs seen by the router, the NACK is dropped; otherwise, it is forwarded. Because
the algorithm relies on routers having group information, it can be implemented by a link-state routing
algorithm, but not by a distance vector routing algorithm.

3.4.1 Open Questions

In proposing network-level support for NACK suppression, we have created many open questions. We
brie
y discuss some of them here and suggest that they are directions for future research:

� The e�ectiveness of suppressing multicasted NACKs may be limited because routers must be con-
servative about which packets can be dropped. Future research can investigate the existence of less
conservative approaches. Also, the proposed algorithm relies on link-state routing; the idea may not
be practical unless a distance vector version is developed.

� The use of network-level tags to identify redundant packets poses the problem of maintaining the
tags. How do hosts in the same group agree on a set of tag values? How are tags recycled so that
a su�ciently small number can be used thereby not imposing too large a storage requirement in
network-level headers?

� Are there other network-level mechanisms that can bene�t reliable multicast in addition to NACK
suppression? One direction that may have promise is caching of packets in the routers. This extends
the bene�t of getting a retransmit from a nearby host provided by SRM. In a network that can cache
packets, a retransmit can be ful�lled by a router, not just a host. This approach can bene�t from
the emerging Active Networks research [24, 25, 30].

� Support for network-level mechanisms like NACK suppression can pose a problem in high-bandwidth
routers. It has been proposed to support multicast routing in fast packet switching by building
copy networks coupled with point-to-point networks in order to handle multicasting at extremely
high rates [18, 33, 16, 26]. Integrating network-level support such as NACK suppression into high
performance switches that support multicast, while minimizing the impact on hardware complexity
and clock rate is a challenge.

4 Conclusion

This paper considers the scalability of di�erent unreliable and reliable multicast protocols. The paper
presents a model that allows the direct comparison of unreliable multicast routing algorithms under a
single consistent framework. Using the model to study the scalability of four existing unreliable multicast
protocols, we �nd that group density, the join/leave frequency of members, and the 
ood duty of RPM
are �rst-order e�ects, while the cost of di�erent distribution trees is a second-order e�ect. In particular,
a high join/leave frequency can negatively impact the MOSPF protocol when application bandwidth is
low. However, a somewhat surprising result is that MOSPF is scalable in situations where data message
cost dominates control message cost, such as high application bandwidth, or in the case that application
bandwidth is moderate, if groups are dense. A high 
ood duty impacts the cost of RPM unless groups
are dense so that the cost of a broadcast is similar to the cost of a multicast. When groups are sparse,
the only way to control the cost of RPM is to limit the 
ood duty factor. CBT and PIM both scale well
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under our analyses, but bandwidth concentration e�ects, which our model does not consider, are expected
to negatively impact CBT.

This paper also provides an analysis of two competing reliable multicast protocols, LBRM and SRM.
When considering messaging cost, LBRM is more scalable because it allows a gradual increase in cost as
group size or per-receiver failure rates increase. SRM su�ers from the fact that when at least one receiver
fails to receive a multicast packet reliably, it incurs the full cost of at least two multicasts. However, in
terms of error recovery latency, SRM is more scalable as it in theory can recover in 1 RTT to the nearest

reliable copy, whereas LBRM takes up to 2 RTTs to the primary server. The SRM approach is appealing
because it makes use of local reliable copies. The LBRM approach leverages local assistance only within
domains; between domains, a retransmit can only be ful�lled by the primary server. For SRM to be
feasible, it must address the high message cost of multicasting each NACK and retransmit to the entire
group. A local recovery technique to limit the scope of multicasts, which is the subject of ongoing research,
seems promising.

A problem that has not been adequately addressed in reliable multicast is NACK suppression. We feel
this stems from the fact that current solutions make use of only the endpoints. We propose to deal with
NACK suppression at the network level where information about tra�c patterns is available. The paper
suggests techniques for suppressing multicasted NACKs. Further research is necessary to evaluate the
e�ectiveness of this technique, the problem of tag maintenance, and the implementation of this technique
in routers, especially those that are designed to handle high data rates.
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A Model Derivation for RPM, CBT, and PIM

In Section 2.3.1, the model components Ccntrl, Ctree, and Cnm were derived for MOSPF protocol. In this
section, we do the same for RPM, CBT, and PIM.

A.1 RPM

Each time a host joins a group, the gateway for that host sends a message along the reverse-path rooted
at the sender. This message cancels the prune of the branch that leads to the gateway. Although this
message only needs to travel as far as the �rst non-pruned router, we are pessimistic in this model, and
attribute 1

2
the diameter number of hops of the network, N . Because an acknowledgment is expected at

the gateway, the total cost is diam(N). When a host leaves the group, a similar action occurs, except the
message calls for a prune back up to the �rst non-pruned router.

CRPM
cntrl = diam(N) (8)

RPM uses shortest-path trees for distribution of unreliable multicast packets. Therefore, the cost of
distribution of data messages to members is CSPT (N;G).

CRPM
tree = CSPT (N;G) (9)

RPM avoids delivering packets down subtrees where there are no members by pruning. However, the
prune entries in each router's routing table time out occasionally, and the entire network is 
ooded by the
multicast (i.e., a broadcast) momentarily until the unneeded branches are pruned back. This is necessary
for group members to �nd new senders. If there are N routers in a network, then the broadcast across
this network using Truncated Reverse-Path Broadcast (TRPB) [8] is N because there is one message that
arrives to each router. The excess messages, i.e. the messages that do not reach group members in the
TRPB, is simply the di�erence between the number of TRPB messages, and the number of messages in
the pruned shortest-path tree. Our model assumes that RPM 
ips back and forth between a TRPB phase
and an SPT phase, and that the fraction of time spent in the TRPB phase is floodduty.

CRPM
nm = (N � CSPT (N;G))floodduty (10)

A.2 CBT

Each time a host joins a group in CBT, it sends a message up the reverse-path core-based tree to add
itself. Normally, this message only needs to go as far as the �rst non-pruned router. We are pessimistic in
our model and assume that such a message traverses 1

2
the diameter of the network, N . The same cost is

incurred by an ACK that is sent back to the joining host.
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CCBT
cntrl = diam(N) (11)

CBT uses core-based trees for distributing unreliable multicast packets. The cost of this tree is
CCBT (N;G). We compute CCBT (N;G) in a similar way as CSPT (N;G). Given a network topology and a
group size, we randomly place the group members. Then we �nd the optimal-delay core by considering all
routers in the network and computing the average delay over all possible senders in the group. We do this
for several random placements of the group. CCBT (N;G) is the average over all computed optimal-delay
CBTs.

CCBT
tree = CCBT (N;G) (12)

Core-based trees never deliver messages down subtrees that do not lead to group members.

CCBT
nm = 0 (13)

A.3 PIM

Each time a host joins a group in PIM, it sends a join up towards the core, or rendezvous point. This is
similar to the (pessimistic) cost in CBT, 1

2
the diameter of the network. Additionally, after the host �nds

a sender and it decides it wants to switch to a shortest-path tree, it sends another join message towards
the sender, and a prune message towards the rendezvous point. We attribute another 1

2
diam(N) cost to

each of these operations.

CPIM
cntrl =

3

2
diam(N) (14)

We assume that in the steady-state, PIM uses shortest-path trees to deliver multicast messages. There-
fore, the cost of data messages destined for group members is CSPT (N;G).

CPIM
tree = CSPT (N;G) (15)

When using a shortest-path tree, PIM never delivers messages down subtrees that do not lead to group
members. However, PIM sources always have to send to the rendezvous point, regardless of whether group
members receive data through the shared tree rooted at the rendezvous point, or a separate shortest-path
tree. Thus, it is possible for messages destined for the rendezvous point never to reach a group member.
We regard this as a negligible cost.

CPIM
nm = 0 (16)
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