Process Description. In **facilitated transport**, a carrier molecule C binds to the substrate S to form a carrier-substrate complex CS at the outer side of the cell membrane. The complex diffuses by Fick's diffusion from the outer side of the membrane toward the inner side of the membrane, where the substrate is released into the cell cytoplasm and the free carrier C is regenerated. The free carrier shuttles back, again by Fick's diffusion, toward the outer side of the membrane, where it picks up another substrate; and the cycle is repeated. The following "reaction mechanism" describes this process.

 $\begin{array}{c} \mathsf{K} & \mathsf{K} \\ \mathsf{C}_{\mathsf{e}} + \mathsf{S}_{\mathsf{e}} \longleftrightarrow \mathsf{CS}_{\mathsf{e}} \longrightarrow \mathsf{diffusion} \text{ across cell membrane} \longrightarrow \mathsf{CS}_{\mathsf{i}} \longleftrightarrow \mathsf{C}_{\mathsf{i}} + \mathsf{S}_{\mathsf{i}} \end{array}$

$$C_e \longleftarrow diffusion across cell membrane \longleftarrow C_i$$

Alternate Process description with more intermediate steps.

 $C_e + S_e \leftrightarrow intermediate \rightarrow CS_e \longrightarrow diffusion across cell membrane \longrightarrow CS_i \leftarrow intermediate \leftrightarrow C_i + S_i$

Underlying Ideas.

1. Flux of a chemical species across cell membrane via Fick's diffusion.

 $flux = \frac{D}{\delta} \cdot (c_e - c_i)$... in mole/s·m²

where D ... Diffusivity of a chemical species

 δ ... thickness of cell membrane

c _ ... concentration of the chemical species at the outer cell membrane (extracellular)

 $\mathbf{c}_{\,i}$ $\,$... concentration of the chemical species at the inner cell membrane (intracellular)

We apply Fick's diffusion to both the complex and the free carrier.

$$flux_{CS} = \frac{D_{CS}}{\delta} \cdot (CS_{e} - CS_{i}) \quad ... flux of the carrier-substrate complex flux_{C} = \frac{D_{C}}{\delta} \cdot (C_{e} - C_{i}) \quad ... flux of the free carrier$$

2. At quasi-steady state or equilibrium, the net in-flux of the carrier-substrate complex CS is balanced by the net out-flux of the free carrier C.

 $flux CS^{=-flux}C$

3. The carrier can take on two forms: complex with the substrate and free. We assume that the binding event is reversible and fast; thus, it is described by an equilibrium constant K, which is related to the affinity of the carrier molecule for the substrate molecule. The extent of complex depends on the substrate concentration.

$$CS \longleftrightarrow C + S$$
$$K = \frac{C \cdot S}{CS}$$

1

4. The total number of the carrier molecules is conserved. Strictly speaking, **the concentration of the carrier species is not conserved**, and we cannot simply add up concentrations from an arbitrary number of locations, say, at the inner and outer membrane. For example, we miss by a factor of 2 if we simply add up concentrations at the inner and outer cell membrane.

$$C_{\text{total}} \cdot \text{Area} \cdot \delta = \int_{0}^{\delta} CS(x) \cdot \text{Area} \, dx + \int_{0}^{\delta} C(x) \cdot \text{Area} \, dx$$

Because of Fick's diffusion, the concentration profiles for CS and C within the cell membrane are linear.

$$CS(x) = CS_{e} - (CS_{e} - CS_{i}) \cdot \frac{x}{\delta}$$
$$C(x) = C_{e} - (C_{e} - C_{i}) \cdot \frac{x}{\delta}$$

Substituting CS(x) and C(x) into the integral yields,

$$C_{\text{total}} = \frac{1}{2} \cdot \left(CS_{e} + CS_{i} + C_{e} + C_{i} \right)$$

Another way of thinking is that the different forms of carrier (free unassociated form C and associated form CS) are conserved.

$$C_{\text{total}} = CS_{\text{average}} + C_{\text{average}}$$
 where $CS_{\text{average}} = \frac{CS_{e} + CS_{i}}{2}$ $C_{\text{average}} = \frac{C_{e} + C_{i}}{2}$

Derivation. Below, we express the above ideas mathematically and let Mathcad crank out the answer.

Given

Steady-state in- and out- fluxes.

Definition of dissociation constant.

$$flux = \frac{D_{CS}}{\delta} \cdot (CS_{e} - CS_{i}) \qquad flux = -\frac{D_{C}}{\delta} \cdot (C_{e} - C_{i})$$
$$K = \frac{C_{e} \cdot S_{e}}{CS_{e}} \qquad K = \frac{C_{i} \cdot S_{i}}{CS_{i}}$$
$$C_{total} = \frac{1}{2} \cdot (CS_{e} + CS_{i} + C_{e} + C_{i})$$

Conservation of different forms.

The above 5 equations allows us to solve for 5 variables, which are flux (which is what we are really after) and the different forms of carrier species (which are what we do not want to see appearing on the RHS of flux=?).

$$\operatorname{Find}(\operatorname{CS}_{e},\operatorname{C}_{e},\operatorname{CS}_{i},\operatorname{C}_{i},\operatorname{flux}) \rightarrow \left[\begin{array}{c} 2\cdot\operatorname{C}_{\operatorname{total}}\cdot\operatorname{S}_{e}\cdot\frac{\left(\operatorname{D}_{C}\cdot\operatorname{K}+\operatorname{D}_{CS}\cdot\operatorname{S}_{i}\right)}{\left(\operatorname{S}_{i}\cdot\operatorname{K}\cdot\operatorname{D}_{C}+\operatorname{S}_{i}\cdot\operatorname{K}\cdot\operatorname{D}_{CS}+2\cdot\operatorname{D}_{C}\cdot\operatorname{K}^{2}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{e}\cdot\operatorname{D}_{CS}\cdot\operatorname{S}_{i}+\operatorname{S}_{i}+\operatorname{S}_{i}+\operatorname{S}_{i}+\operatorname{S}_{i}+\operatorname{S}_{i}+\operatorname{S}_{i}+\operatorname{S}_{i}+\operatorname{S}_{i}+\operatorname{S}_{i}+\operatorname{S}_{i}+\operatorname{S}_{i}+\operatorname{S}_{i}$$

S

$$flux = \frac{D_{CS} \cdot C_{total}}{\delta} \cdot \frac{K \cdot (S_{e} - S_{i})}{(K + S_{e}) \cdot (K + S_{i})} = flux \max \cdot \frac{K \cdot (S_{e} - S_{i})}{(K + S_{e}) \cdot (K + S_{i})} \quad \text{where } flux \max = \frac{D_{CS} \cdot C_{total}}{\delta}$$

Special case: Very rapid rate of consumption of the substrate in the cell leads to a minimal intracellular concentration of S.

 $S_i=0$ flux=flux $\max \frac{S_e}{K+S_e}$... Michaelis-Menten saturation expression

4 Alternate a -- correct. The total concentration of the carrier molecules is conserved at each side -a better interpretation of "C_{total.e}=CS_e+C_e" is not "conservation" but a mere definitino of what "C_{total.e}" is . Note that conservation of the total number of moles of carrier species is a fact; however, we cannot impose $C_{total.i} = C_{total.e}$, because that does not follow from material balance and because doing so will result in an over-specified system of equations with 6 equations and only 5 unknowns to solve for: CS_e , C_e , CS_i , C_i , flux. Indeed, the result below shows that $C_{total.i} \neq C_{total.e}$. (Think hard why in general the total carrier concentrations may be different between the extracellular and the intracelluar sides.)

Given

 $flux = \frac{D_{CS}}{\delta} \cdot \left(CS_{e} - CS_{i} \right) \qquad flux = -\frac{D_{C}}{\delta} \cdot \left(C_{e} - C_{i} \right)$ Steady-state in- and out- fluxes. $K = \frac{C_{e} \cdot S_{e}}{CS_{e}} \qquad K = \frac{C_{i} \cdot S_{i}}{CS_{i}}$ $C_{total.e} = CS_{e} + C_{e} \qquad C_{total.i} = CS_{i} + C_{i}$ Definition of dissociation constant. Conservation of different forms. The above 6 equations allows us to solve for 6 variables. $C_{\text{total.e}} \cdot \frac{S_e}{(K+S_e)}$ $K \cdot \frac{C_{\text{total.e}}}{(K + S_{e})}$ $C_{total.e} \cdot \frac{\left(D_{C} \cdot K + S_{e} \cdot D_{CS}\right)}{\left(S_{e} \cdot D_{CS} \cdot S_{i} + D_{C} \cdot K^{2} + S_{i} \cdot K \cdot D_{CS} + S_{e} \cdot D_{C} \cdot K\right)} \cdot S_{i}$ $Find(CS_{e}, C_{e}, CS_{i}, C_{i}, flux, C_{total.i}) \rightarrow$ $K \cdot C_{total.e} \cdot \frac{\left(D_{C} \cdot K + S_{e} \cdot D_{CS}\right)}{\left(S_{e} \cdot D_{CS} \cdot S_{i} + D_{C} \cdot K^{2} + S_{i} \cdot K \cdot D_{CS} + S_{e} \cdot D_{C} \cdot K\right)}$ $\left(-S_{i}+S_{e}\right) \cdot D_{CS} \cdot D_{C} \cdot K \cdot \frac{C_{total.e}}{\left[\left(K+S_{e}\right) \cdot \left[\delta \cdot \left(D_{C} \cdot K+D_{CS} \cdot S_{i}\right)\right]\right]}\right]$ $\left(\mathbf{D}_{\mathbf{C}} \cdot \mathbf{K} + \mathbf{S}_{\mathbf{e}} \cdot \mathbf{D}_{\mathbf{CS}} \right) \cdot \mathbf{C}_{\text{total.e}} \cdot \frac{\left(\mathbf{K} + \mathbf{S}_{\mathbf{i}} \right)}{\left(\mathbf{S}_{\mathbf{e}} \cdot \mathbf{D}_{\mathbf{CS}} \cdot \mathbf{S}_{\mathbf{i}} + \mathbf{D}_{\mathbf{C}} \cdot \mathbf{K}^{2} + \mathbf{S}_{\mathbf{i}} \cdot \mathbf{K} \cdot \mathbf{D}_{\mathbf{CS}} + \mathbf{S}_{\mathbf{e}} \cdot \mathbf{D}_{\mathbf{C}} \cdot \mathbf{K} \right)}$

$$C_{\text{total.i}} = C_{\text{total.e}} \cdot \frac{\left(D_{C} \cdot K + D_{CS} \cdot S_{e}\right) \cdot \left(K + S_{i}\right)}{\left(D_{C} \cdot K + D_{CS} \cdot S_{i}\right) \cdot \left(K + S_{e}\right)} \quad \dots \text{ in general, } C_{\text{total.i}} \neq C_{\text{total.e}} \text{ if } D_{C} \neq D_{CS}$$

 $C_{total,i}=C_{total,e}$ if $D_{C}=D_{CS}$.

4 Alternate b -- **ok**. Assume the total concentration of the carrier molecules is conserved at each side, and they are equal on both sides $C_{total} = CS_e + C_e = CS_i + C_i^*$. As mentioned in section "Alternative a" above, we will later examine when this assumption holds. Because keeping all the equations will result in an over-specified system of equations with 6 equations and only 5 unknowns to solve for, we take away one of the flux equations.

Given

Steady-state in- and out- fluxes.

Definition of dissociation constant.

$$flux = \frac{D_{CS}}{\delta} \cdot (CS_{e} - CS_{i})$$

$$K = \frac{C_{e} \cdot S_{e}}{CS_{e}} \qquad K = \frac{C_{i} \cdot S_{i}}{CS_{i}}$$

$$C_{total} = CS_{e} + C_{e} \qquad C_{total} = CS_{i} + C_{i}$$

Conservation of different forms.

The above 6 equations allows us to solve for 6 variable^C.total

$$\operatorname{Find}(\operatorname{CS}_{e}, \operatorname{C}_{e}, \operatorname{CS}_{i}, \operatorname{C}_{i}, \operatorname{flux}) \xrightarrow{\rightarrow} \left(\begin{array}{c} \operatorname{C}_{total} \cdot \frac{K}{(K+S_{e})} \\ \operatorname{C}_{total} \cdot \frac{K}{(K+S_{i})} \\ \operatorname{C}_{total} \cdot \frac{K}{(K+S_{i})} \\ \operatorname{C}_{total} \cdot \frac{K}{(K+S_{i})} \\ \operatorname{D}_{\operatorname{CS}} \cdot \operatorname{C}_{total} \cdot \operatorname{K} \cdot \frac{(-S_{i}+S_{e})}{\left[\delta \cdot \left(\operatorname{K}^{2} + \operatorname{K} \cdot S_{i} + \operatorname{S}_{e} \cdot \operatorname{K} + \operatorname{S}_{e} \cdot S_{i} \right) \right]} \right)$$

This alternative yields the following expression for flux, which is eqn (4.2) of Shuler

$$flux = \frac{D}{\delta} \frac{CS}{\delta} \cdot \left(CS_e - CS_i \right) = \frac{D}{\delta} \frac{CS}{\delta} \cdot C_{total} \cdot \left(\frac{S_e}{K + S_e} - \frac{S_i}{K + S_i} \right) = J_{max} \cdot \left(\frac{S_e}{K + S_e} - \frac{S_i}{K + S_i} \right)$$

where $J_{max} = \frac{D}{\delta} \frac{CS}{\delta} \cdot C_{total}$

Check: Let's see when the reverse flux equals to the forward flux. Basically how the diffusivities of CS and C (i.e., $D_{CS} \& D_{C}$) need to be related.

reverse flux=
$$-\frac{D_C}{\delta} \cdot (C_e - C_i) = \frac{D_C}{\delta} \cdot C_{\text{total}} \cdot K \cdot \left(\frac{1}{S_i + K} - \frac{1}{S_e + K}\right)$$

For the forward and reverse flux to be equal, we require:

$$\frac{D_{CS}}{\delta} \cdot C_{total} \cdot \left(\frac{S_{e}}{K + S_{e}} - \frac{S_{i}}{K + S_{i}} \right) = \frac{D_{C}}{\delta} \cdot C_{total} \cdot K \cdot \left(\frac{1}{S_{i} + K} - \frac{1}{S_{e} + K} \right) \longrightarrow D_{C} = D_{CS}$$

Thus, the total carrier concentrations are idential on both sides when diffusivities are equal: $D_C = C_{CS}$. Conversely, the total carrier concentrations are different on two sides when diffusivities are unequal. 6

4 Alternate b -- repeat of above. Instead of assuming the total concentration of the carrier molecules are equal on both sides $C_{total} = CS_e + C_e = CS_i + C_i$, we state they are (not an assumption). We solve a system of 6 equations and 6 unknowns, by adding $\rm D_{CS}$ as an unknown. Given

Steady-state in- and out- fluxes.

Definition of dissociation constant.

$$flux = \frac{D_{CS}}{\delta} \cdot (CS_{e} - CS_{i}) \quad flux = -\frac{D_{C}}{\delta} \cdot (C_{e} - C_{i})$$
$$K = \frac{C_{e} \cdot S_{e}}{CS_{e}} \qquad K = \frac{C_{i} \cdot S_{i}}{CS_{i}}$$
$$C_{total} = CS_{e} + C_{e} \qquad C_{total} = CS_{i} + C_{i}$$

Conservation of different forms.

The above 6 equations allows us to solve for 6 variable $S_{e} \cdot \frac{C_{total}}{(K+S_{e})}$ $C_{\text{total}} \cdot \frac{K}{(K+S_e)}$ $S_{i} \cdot \frac{C_{total}}{(K+S_{i})}$ $\operatorname{Find}\left(\operatorname{CS}_{e}, \operatorname{C}_{e}, \operatorname{CS}_{i}, \operatorname{C}_{i}, \operatorname{flux}, \operatorname{D}_{CS}\right) \rightarrow$ $C_{total} \cdot \frac{K}{\left(K + S_{i}\right)}$ $D_{C} \cdot C_{total} \cdot K \cdot \frac{\left(-S_{i} + S_{e}\right)}{\left[\delta \cdot \left(K^{2} + K \cdot S_{i} + S_{e} \cdot K + S_{e} \cdot S_{i}\right)\right]}$

С

As expected, the results are identical to the last section, including the requirement: D_{CS}=D_C

Graph to show general behavior. K := 1 flux $_{max} := 1$ $S_i := 1$ flux $(S_e) :=$ flux $_{max} \cdot \frac{K \cdot (S_e - S_i)}{(K + S_e) \cdot (K + S_i)}$ $S_e := 0, 0.1 .. 10$

Flux as a function of the driving force, which is the difference in the extracellular and intracellular substrate concentrations: S_e - S_i .

facilit.mcd

Active Transport -- when the equilibrium values are different at the outer and inner membrane. Note that when diffusivities $D_{CS} \& D_C$ are different ($D_{CS} \neq D_C$), active transport is also possible -- basically we need different/asymetric transport and/or kinetic properties..

assume S_e, S_i

Given

Steady-state in- and out- fluxes.

Definition of dissociation constant. K

$$flux = \frac{D_{CS}}{\delta} \cdot (CS_{e} - CS_{i}) \qquad flux = -\frac{D_{C}}{\delta} \cdot (C_{e} - C_{i})$$
$$K_{e} = \frac{C_{e} \cdot S_{e}}{CS_{e}} \qquad K_{i} = \frac{C_{i} \cdot S_{i}}{CS_{i}}$$
$$C_{total} = \frac{1}{2} \cdot (CS_{e} + CS_{i} + C_{e} + C_{i})$$

Conservation of different forms.

The above 5 equations allows us to solve for 5 variables.

$$=\frac{2 \cdot D_{CS} \cdot C_{total}}{\delta} \cdot \frac{K_{i} \cdot S_{e} - K_{e} \cdot S_{i}}{2 \cdot K_{e} \cdot K_{i} + (1 + \alpha) \cdot \left(K_{e} \cdot S_{i} + K_{i} \cdot S_{e}\right) + 2 \cdot \alpha \cdot S_{e} \cdot S_{i}} \quad \text{where} \quad \alpha = \frac{D_{CS}}{D_{C}}$$

Special case: identical diffusion coefficient for CS and C. $\rightarrow \alpha=1$

$$flux = \frac{D_{CS} \cdot C_{total}}{\delta} \cdot \frac{K_{i} \cdot S_{e} - K_{e} \cdot S_{i}}{\left(K_{e} + S_{e}\right) \cdot \left(K_{i} + S_{i}\right)} = flux \max \cdot \frac{K_{i} \cdot S_{e} - K_{e} \cdot S_{i}}{\left(K_{e} + S_{e}\right) \cdot \left(K_{i} + S_{i}\right)} \quad \text{where } flux \max = \frac{D_{CS} \cdot C_{total}}{\delta}$$

Special case: Very rapid rate of consumption of the substrate in the cell leads to a minimal intracellular concentration of S.

flux=flux $\max \frac{S_e}{K_e + S_e}$... Michaelis-Menten saturation expression

Special case: symmetric membrane (i.e., same properties at both the inner and outer cell membrane.

$$K_e = K_i = K$$

flux=flux max
$$\frac{K \cdot (S_e - S_i)}{(K + S_e) \cdot (K + S_i)}$$

For the flux to be positive, we must have $S_e > S_i$

Thus, with a symmetrical membrane it is not possible to achieve a positive flux into the cell against the concentration gradient.

Active transport, where the substrate moves against the concentration gradient, is possible for an **asymmetric membrane**. Since the denominator of the flux equation is positive, the numerator must be positive.

For flux>0

numerator=
$$K_i \cdot S_e - K_e \cdot S_i > 0$$
 $\frac{S_e}{S_i} > \frac{K_e}{K_i}$

Transport against the concentration gradient means the intracellular concentration is higher than than the extracellular concentration.

For
$$S_e < S_i$$
 $1 > \frac{S_e}{S_i}$

Combining the last two inequality relationship yields,

$$1 > \frac{S_e}{S_i} > \frac{K_e}{K_i}$$

Thus, active transport requires the dissociation constant at the inner cell membrane to be greater than that at the outer cell membrane.

$$K_i > K_e$$

Graph to show the general behavior. S_i := 1

$$\begin{aligned} & \text{flux}_{\max} := 1 \qquad k_{1i} := 1 \qquad k_{1e} := 1 \qquad k_{ie} := 1 \qquad k_{ii} := 2 \qquad D := 1 \qquad \delta := 1 \\ & K_m := \frac{1}{k_{1e}} \cdot \left[k_{ie} + \frac{1}{\frac{\delta}{D} + \frac{1}{k_{ii}}} \right] \qquad \qquad K_e := \frac{k_{ie}}{k_{1e}} \qquad K_i := \frac{k_{ii}}{k_{1i}} \\ & F_e := \frac{k_{ie}}{k_{1e}} \qquad K_i := \frac{k_{ii}}{k_{1i}} \\ & \text{flux}(S_e) := \text{flux}_{\max} \cdot \frac{S_e - \frac{k_{1i} \cdot k_{ie}}{k_{1e} \cdot k_{ii}} \cdot S_i}{\left(S_e + K_m\right) + \frac{\left(\frac{\delta}{D} \cdot \frac{k_{ii}}{k_{ii}} + \frac{1}{k_{ii}}\right) \cdot \frac{k_{1i}}{k_{1e}} \cdot S_i + \frac{\delta}{D} \cdot \frac{k_{1i}}{k_{ii}} \cdot S_e \cdot S_i}{\frac{\delta}{D} + \frac{1}{k_{ii}}} \end{aligned}$$

 $S_e := 0, 0.1.2$

The above plot has three regions: facilitated transport along the concentration gradient (in \longrightarrow out), active transport against the concentration gradient (out \longrightarrow in), and facilitated transport along the concentration gradient (out \longrightarrow in). Specifically, between $S_e = (K_e/K_i) \cdot S_i$ and $S_e = S_i$, substrate flux is against the concentration gradient.