Solve facilitated transport equations. Demonstrate that Mathcad v14 allows 2 equality constraints

to be combined.

Instructor: Nam Sun Wana
Given

$$
\begin{aligned}
& \text { flux }=\frac{\mathrm{D}_{\mathrm{CS}}}{\delta} \cdot\left(\mathrm{CS}_{\mathrm{e}}-\mathrm{CS}_{\mathrm{i}}\right)=\frac{\mathrm{D}_{\mathrm{C}}}{\delta} \cdot\left(\mathrm{C}_{\mathrm{e}}-\mathrm{C}_{\mathrm{i}}\right) \\
& \mathrm{K}=\frac{\mathrm{C}_{\mathrm{e}} \cdot \mathrm{~S}_{\mathrm{e}}}{\mathrm{CS}_{\mathrm{e}}}=\frac{\mathrm{C}_{\mathrm{i}} \cdot \mathrm{~S}_{\mathrm{i}}}{\mathrm{CS}_{\mathrm{i}}} \\
& \mathrm{C}_{\text {total }}=\frac{1}{2} \cdot\left(\mathrm{CS}_{\mathrm{e}}+\mathrm{CS}_{\mathrm{i}}+\mathrm{C}_{\mathrm{e}}+\mathrm{C}_{\mathrm{i}}\right)
\end{aligned}
$$

Result we are after:

$$
\text { flux }=\frac{2 \cdot \mathrm{C}_{\text {total }} \cdot \mathrm{D}_{\mathrm{C}} \cdot \mathrm{D}_{\mathrm{CS}} \cdot \mathrm{~K} \cdot \mathrm{~S}_{\mathrm{e}}-2 \cdot \mathrm{C}_{\text {total }} \cdot \mathrm{D}_{\mathrm{C}} \cdot \mathrm{D}_{\mathrm{CS}} \cdot \mathrm{~K} \cdot \mathrm{~S}_{\mathrm{i}}}{2 \cdot \mathrm{D}_{\mathrm{C}} \cdot \mathrm{~K}^{2} \cdot \delta+\mathrm{D}_{\mathrm{C}} \cdot \mathrm{~K} \cdot \mathrm{~S}_{\mathrm{e}} \cdot \delta+\mathrm{D}_{\mathrm{C}} \cdot \mathrm{~K} \cdot \mathrm{~S}_{\mathrm{i}} \cdot \delta-\mathrm{D}_{\mathrm{CS}} \cdot \mathrm{~K} \cdot \mathrm{~S}_{\mathrm{e}} \cdot \delta-\mathrm{D}_{\mathrm{CS}} \cdot \mathrm{~K} \cdot \mathrm{~S}_{\mathrm{i}} \cdot \delta-2 \cdot \mathrm{D}_{\mathrm{CS}} \cdot \mathrm{~S}_{\mathrm{e}} \cdot \mathrm{~S}_{\mathrm{i}} \cdot \delta}
$$

