MURI Final Review July 2006

Bruce Jacob

University of Maryland

SLIDE 1

System-Level Vulnerability and Mitigation

Prof. Bruce Jacob, Hongxia Wang, Samuel Rodriguez, Cagdas Dirik

Electrical & Computer Engineering

AFOSR-MURI Final Review, July 2006

MURI Final Review July 2006

Bruce Jacob

University of Maryland

SLIDE 2

Overview

Primer: Circuits & Systems & How They Fail

- Components of digital systems
- Internal & External vulnerabilities

Quantifying External Vulnerability

- DUT: Test chip fabricated in AMI's 0.5µm process
- Comparison of vulnerability: DUT's clock/data inputs

Quantifying Internal Vulnerability

- Predictive 45nm BSIM4 models integrated w/ Spectre
- Shmoo plots for Drowsy & DR-Gated-GND SRAM cells

Mitigation

- TERPS architecture & prototype chipset
- System verification

"External" vs. "Internal" Vulnerability

Image: Sector of the sector

- External Signals: *How easily can they sneak into chip?*
- Internal Signals: *How easily can they upset state?*

MURI Final Review July 2006

VULNERABILITY AND MITIGATION

Bruce Jacob

University of Maryland

External Vulnerability: DUT

MURI Final Review July 2006

VULNERABILITY AND MITIGATION

Bruce Jacob

University of Maryland

MURI Final Review July 2006

Bruce Jacob

University of Maryland

SLIDE 8

CLK vs. DATA Inputs

Power-v-Freq. required to cause incorrect behavior (state change in digital logic)

Internal Vulnerability: SRAM

MURI Final Review July 2006

VULNERABILITY AND MITIGATION

Bruce Jacob

University of Maryland

SRAM Implementation

SRAM memory cell (top) Full CMOS 6T implementation (bottom) State of bitlines (right) (note coupling)

MURI Final Review July 2006

VULNERABILITY AND MITIGATION

Bruce Jacob

University of Maryland

Experimental Set-Up

AND MITIGATION

VULNERABILITY

MURI Final Review July 2006

Bruce Jacob

University of Maryland

SRAM Noise Immunity

SRAM cells with noise injected:

MURI Final Review July 2006

VULNERABILITY AND MITIGATION

Bruce Jacob

University of Maryland

SRAM Noise Immunity

Shmoo plots

MURI Final Review July 2006

VULNERABILITY AND MITIGATION

Bruce Jacob

University of Maryland

MURI Final Review July 2006

Bruce Jacob

University of Maryland

SLIDE 14

SRAM Initial Results

Low-power SRAM circuits most susceptible to noise (EMI) through wordline coupling

Explained by strong differential noise that affects the internal state whenever the wordline has enough strength to turn on the access transistors.

For example, when the initial state of an idle or inactive memory cell is "1", and a "0" is being written to a neighboring cell such that the bitline goes low (and the complementary bitline stays high), a voltage difference exists between the internal node and the bitline it is connected to (also true for the complementary side). The access transistors to idle memory cells are ideally turned off to isolate the internal nodes from the bitlines, but any noise present in the wordline will tend to induce currents through the access transistors that produces differential-mode noise across the cross-coupled inverter latch, potentially overwriting it and corrupting its stored state.

Because MOSFET switching characteristics change with temperature, future/present work investigates thermal effects

MURI Final Review July 2006

Bruce Jacob

University of Maryland

SLIDE 15

Mitigation: TERPS

Problem: susceptibility to (intentional) EMI

- Vdd ↓ ⇒ circuit sensitivity ↑
- T_{clk} ↓ ⇒ circuit sensitivity ↑
- L_{eff} ↓ ⇒ circuit sensitivity ↑
- ECC not a solution for wordline coupling
- Clock coupling takes out whole chip

Solution: checkpoint/rollback

MURI Final Review July 2006

Bruce Jacob

University of Maryland

SLIDE 16

Prototype Chipset

RiSC CPU

Safe Storage

CPU state is periodically saved to safe storage (includes register file, program counter, pending memory requests, etc.)

State is restored upon detection of high EMI levels

Efficient operation requires high inter-chip bandwidth (optical, 3D integration, etc.)

2D Test Board

Validation vs. Interference

MURI Final Review July 2006

VULNERABILITY AND MITIGATION

Bruce Jacob

University of Maryland

MURI Final Review July 2006

Bruce Jacob

University of Maryland

SLIDE 18

Acknowledgments, etc.

INVALUABLE AID:

Todd Firestone and John Rodgers

PUBLICATIONS:

- "Energy/power breakdown of pipelined nanometer caches (90nm/65nm/45nm/32nm)," S. Rodriguez and B. Jacob, ISLPED. October 2006.
- "Electromagnetic interference and digital circuits: An initial study of clock networks." H. Wang, S. Rodriguez, C. Dirik, and B. Jacob. *Electromagnetics*, vol. 26, no. 1, pp. 73-86. January 2006.
- "TERPS: The Embedded Reliable Processing System." H. Wang, S. Rodriguez, C. Dirik, A. Gole, V. Chan, and B. Jacob. ASP-DAC. January 2005.
- "Radio frequency effects on the clock networks of digital circuits." H. Wang, C. Dirik, S. Rodriguez, A. Gole and B. Jacob. *EMC*, pp. 93-96. August 2004.

MURI Final Review July 2006

Bruce Jacob

University of Maryland

SLIDE 19

BACKUP SLIDES

How To Make This System Fail ...

MURI Final Review July 2006

VULNERABILITY AND MITIGATION

Bruce Jacob

University of Maryland

How To Make This System Fail ... DATA

- RF that makes it this far (past initial I/O buffers) has corrupted the system: only solution is to use higher level bus- or packet-encoding techniques
- Corrupted data can lead to incorrect results, software crash/reboot, transmission to remote nodes, etc.

AND MITIGATION

VULNERABILITY

MURI Final Review July 2006

Bruce Jacob

University of Maryland

How To Make This System Fail ... CLOCK

- RF that makes it this far (past initial I/O buffers) has corrupted the system: packet-encoding techniques that might detect data corruption are inapplicable
- Unwanted clock edges likely result in metastability, lead to incorrect results, most likely system crash

MURI Final Review July 2006

VULNERABILITY AND MITIGATION

Bruce Jacob

University of Maryland

How To Make This System Fail ... CLOCK

MURI Final Review July 2006

VULNERABILITY AND MITIGATION

Bruce Jacob

University of Maryland

How To Make This System Fail ... VDD/VSS

- Localized (or global) ripples on groundplanes can cause logic to misbehave, inputs to be misinterpreted (e.g. suppose Data/Clk = 1, V > V_{IL} on gate of 2nd INV)
- Causes same effects as data/clock corruption

MURI Final Review July 2006

VULNERABILITY AND MITIGATION

Bruce Jacob

University of Maryland

DUT Circuit Perspective

Points of Interest:

- Digital system built from complementary gate designs (high input impedance, low output impedance).
- CLK only driving MUX, one DFF (see previous slide).
- => CLK and CLKSEL see virtually identical loads.

MURI Final Review July 2006

VULNERABILITY AND MITIGATION

Bruce Jacob

University of Maryland

Input Impedance

MURI Final Review July 2006

VULNERABILITY AND MITIGATION

Bruce Jacob

University of Maryland