MURI Review October 2004

Bruce Jacob

University of Maryland

SLIDE 1

RF and Circuit Integrity in Digital Systems

Prof. Bruce Jacob Electrical & Computer Engineering University of Maryland blj@umd.edu

AFOSR-MURI Annual Review, October 2004

MURI Review October 2004

Bruce Jacob

University of Maryland

SLIDE 2

Overview

How Digital Circuits & Systems Are Built, and Some Ways in Which They Fail

- Components of Digital Systems
- **RF- and Temperature-Related Vulnerabilities**
 - Data Inputs and Networks
 - Clock Inputs and Networks
 - Power/Ground Inputs and Networks
- Circuit Design: Our Device-Under-Test

Recent Work

- Comparison of Vulnerability: DUT's Clock/Data Inputs
- [DUT: test chip fabricated in AMI's 0.5µm process]
- Custom Chip Design & Fabrication for ESD Studies

Future Work

MURI Review October 2004

Bruce Jacob

University of Maryland

SLIDE 3

Digital Systems: A Primer

VDD

Most systems are *pipelined*:

- Multiple logic blocks operating simultaneously
- Highly synchronous: lock-step operation

MURI Review October 2004

Bruce Jacob

University of Maryland

SLIDE 5

Digital Systems: A Primer

Components of Digital Systems

Groundplanes play significant role:

- Provide references for input amplifiers
- Allow CMOS circuits to behave as signal repeaters (with high input impedance, low output impedance)

Digital Systems: A Primer

Components of Digital Systems

I/O Pads play significant role:

- Enormous capacitances, require enormous gates to drive them (and the pins & off-chip traces)
- Big gates => big currents; fast clocks => small dt ...
 VDD/VSS leads have inductance => Ldi/dt noise

MURI Review October 2004

CIRCUIT

Bruce Jacob

University of Maryland

SLIDE 6

MURI Review October 2004

Bruce Jacob

University of Maryland

SLIDE 7

Digital Systems: A Primer

Components of Digital Systems

At the bottom are 'just' a bunch of MOSFETs

MURI Review October 2004

Bruce Jacob

University of Maryland

SLIDE 8

Digital Systems: A Primer

Components of Digital Systems

At the bottom are 'just' a bunch of MOSFETs

- Each register shown holds one bit
- Each I/O pad requires its own ESD, receivers, & drivers
- Logic blocks can be arbitrarily large/complex

MURI Review October 2004

Bruce Jacob

University of Maryland

SLIDE 9

Circuit Integrity: Data

How To Make This System Fail ...

- RF that makes it this far (past initial I/O buffers) has corrupted the system: only solution is to use higher level bus- or packet-encoding techniques
- Corrupted data can lead to incorrect results, software crash/reboot, transmission to remote nodes, etc.

Sequential Circuits Primer

• Storage elements (latches, registers) expect data and clock edges to be timed perfectly (e.g., within 20ps)

CIRCUIT INTEGRITY

MURI Review October 2004

Bruce Jacob

University of Maryland

SLIDE 10

Sequential Circuits Primer

SET-UP and HOLD time, metastability

- Data must not transition near clock edges
- Corollary: Perturbations on clock network (e.g., noise spikes, thermal-related delays) achieve same results

INTEGRITY MURI Review

October 2004

CIRCUIT

Bruce Jacob

University of Maryland

SLIDE 11

MURI Review October 2004

Bruce Jacob

University of Maryland

SLIDE 12

Circuit Integrity: Clock

How To Make This System Fail ...

- RF that makes it this far (past initial I/O buffers) has corrupted the system: packet-encoding techniques that might detect data corruption are inapplicable
- Unwanted clock edges likely result in metastability, lead to incorrect results, most likely system crash

MURI Review October 2004

Bruce Jacob

University of Maryland

SLIDE 13

Circuit Integrity: Clock

Maximum clock-frequency calculations

 Critical path determines minimum clock period (in this example: 800ps + register overhead + skew/etc. =1000ps total, or 1GHz [as opposed to 750ps/1.33GHz])

MURI Review October 2004

Bruce Jacob

University of Maryland

SLIDE 14

Circuit Integrity: Clock

How To Make This System Fail ...

(consider tight timing margins in GHz systems)

MURI Review October 2004

Bruce Jacob

University of Maryland

SLIDE 15

Circuit Integrity: V_{DD} & V_{SS}

How To Make This System Fail ...

 Localized (or global) ripples on groundplanes can cause logic to misbehave, inputs to be misinterpreted (e.g. suppose Data/Clk = 1, V > V_{IL} on gate of 2nd INV)

Causes same effects as data/clock corruption

MURI Review October 2004

Bruce Jacob

University of Maryland

SLIDE 16

Circuit Integrity

DISTINGUISHING CHARACTERISTICS of the NETWORKS in DIGITAL SYSTEMS:

- CLK: Only Edges Matter
- DATA: Both Timing and Levels Matter
- VDD/GND: Even Small Changes in Level (e.g., 5–10%) Matter

CLK/DATA: Enter Via ESD Protection

VDD/GND: 1/2 ESD (shunts one to other)

MURI Review October 2004

Bruce Jacob

University of Maryland

SLIDE 17

Our Research Question

Comparing CLK and DATA inputs, which is more important:

- The distinguishing characteristics of the way those inputs will be used in the digital system or circuit?
- The levels and frequencies of injected RF?

Our Device Under Test (counter):

Just about simplest possible digital system

[Last Year's Results: evaluated vulnerability of CLK input]

MURI Review October 2004

Bruce Jacob

University of Maryland

SLIDE 18

Our Device Under Test

CIRCUIT **INTEGRITY Our Device Under Test MURI** Review October 2004 Internal Oscillator VDD **Bruce Jacob** University of Maryland CLK SLIDE 19 DQ Q CLKSEL OUT VSS ESD Input Invert 3-nand MUX Circuitry **Buffers** Select (int/ext clk)

Points of Interest:

- Digital system built from complementary gate designs (high input impedance, low output impedance).
- CLK only driving MUX, one DFF (see previous slide).
- => CLK and CLKSEL see virtually identical loads.

MURI Review October 2004

Bruce Jacob

University of Maryland

SLIDE 23

CLK vs. CLKSEL Inputs

Power-v-Freq. required to cause incorrect behavior (state change in digital logic)

Recent Work: ESD

ESD Test Chip I (die photo) for Rodgers & Firestone ESD Test Chip II (layout) for Rodgers & Firestone

Custom-designed on-chip pads to accommodate input probes

Designed & fabricated two chips (one on right just back from fab) ... allow probing at various points between PAD and internals

CIRCUIT INTEGRITY

MURI Review October 2004

Bruce Jacob

University of Maryland

SLIDE 25

MURI Review October 2004

Bruce Jacob

University of Maryland

SLIDE 26

Future Work

New Test Structures (e.g., to emulate larger designs, differentiate between CLK & DATA)

MURI Review October 2004

Bruce Jacob

University of Maryland

SLIDE 27

Future Work

Using same board, test the power rail

Design new board that differentiates GND input pin from IC's ground plane, to test the ground pin's susceptibility

MURI Review October 2004

Bruce Jacob

University of Maryland

SLIDE 28

Acknowledgments, etc.

GRAD STUDENTS:

Vincent Chan, Cagdas Dirik, Samuel Rodriguez, Hongxia Wang

INVALUABLE AID:

Todd Firestone and John Rodgers

FOR MORE INFO:

http://www.ece.umd.edu/~blj/integrity blj@umd.edu

