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To requester: mem[X]
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[DATA]

Question: where is data? 
Answer: <data owner> 
To data owner: read X 
To requester: mem[X]

Major implications 
for OS and applications

(esp. considering  

Fusion-io like  

capabilitie
s)
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Read

tRP = 15ns tRCD = 15ns, tRAS = 37.5ns
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Row Activate (15ns) 
and Data Restore (another 22ns)

DATA 
(on bus)

BL = 8TIME

Cost of access is high; requires significant effort to 
amortize this over the (increasingly short) payoff.
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Logic Base 
(I/O & CTL)

Hybrid Memory Cube

3

VAULT (channel)

Partitions (ranks)

Off-chip: high 
speed SerDes 
and generic 
protocol 

4 I/O Ports, up 
to 80 GB/s each 

Next gen is  
160 GB/s per  
(640 total) 

Total conc’y = 
16 x 8 x 2..8 
(256–1024)
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HBM
Interface

Copyright (c) 2013 Hiroshige Goto All rights reserved.

GPU/CPU

HBM DRAMs

HBM 1st Generation

1024-bit
8-Channel
Wide Interface

TSV Stack
Up to 4 or 8
DRAM dies

1024-bit x 1Gtps
=128GB/sec

TSV Interposer

High Bandwidth Memory
Uses a simple ‘2.5D’ instead of full 3D stacking

8

1024-bit x 2Gtps  
= 256 GB/sec 
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 2.5D  
 INTERPOSER

CPU/ASIC

DRAM

DRAM DRAM DRAM DRAM

DRAM

DRAMDRAM

Each Link is 128 Bits Wide: 1024 Total
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Non-Volatile Main Memory
Cost for  
10 GB

Size of    
10 GB

Power for 
10 GB

Power  
per GB/s

Off-Chip SRAM $1,000 1 bucket 0.1–1 W 0.1 W
DDR4 SDRAM $100 1 DIMM 1 W 0.1 W
NAND Flash $10 <1 chip 0 0.1 W (?)
3D XPoint $40 <1 chip 0 0.1 W (?)

10

Note: wear-out mitigated by using MANY devices 
(thousands).  A single device would wear out in under two 
days; therefore, 1000 devices should last for at least a year.  

Next, you can trade off longevity for access time and wearout: 
if the data need only last hours or minutes, wearout is reduced. 

CPU

DDRx SDRAM 
Main Memory

DDRx SDRAM 
Last-Level Cache

NAND Flash Main Memory 
(… or *any* source of cheap bits)

CPU
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CPU CPU CPU

8MB LLC 
SRAM

8MB LLC 
SRAM

32 GB DDRx 
SDRAM

1 TB 
NAND Flash

PCIe SSD (I/O)

1 TB 
DDRx SDRAM
Main Memory

DDRx DDRxPCIe

8MB 
SRAM

32 GB SDRAM
Last-Level Cache

1 TB 
NAND Flash

Main Memory

SSD 
$500 – 10W

NVMM 
$500 – 10s of W

Ideal 
$10,000 – 100W
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“Ideal”

SSD - SLC 
NVMM - SLC 
SSD - MLC 
NVMM - MLC

This is when we realized how good 
Linux is at prefetching out of SSDs
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D

D

D

D
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D

DRAM Cache

…

F F
F F

F F

… …

MAPF F
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F F

… …

…

Flash/NV Main Memory

DRAM Cache & Flash MM Controller (FTL)
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F F
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… …

F F

F F

F F
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…

Flash/NV Main Memory

DRAM Cache & Flash MM Controller (FTL)

HMC: 
320GB/s 

16 channels 
HBM: 

256GB/s 
8 channels

it was

Crossbar ReRAM
Intel/Micron 3DXP
~100x faster than flash
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High Bandwidth Non Volatiles
Borrow a page from the HMC playbook

 5

MC MC MC

Network Fabric

MC MC MC

NV ReRAM:
up to 1000ns
expected*
*trade-offs?
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3D ReRAM
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Selector device 

Memory cell 

VDD 

VDD/2 

VDD/2 GND 

• Cells minimum area (no access transistor)
• 2-stack arrays @ 16nm, 20 x 20 mm die:  

                          64GB of ReRAM
• 8-stack arrays => 256 GB of ReRAM
• Stacks arbitrarily high
• No.  Access.  Transistor.

(Metal Oxide)

(diode)
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(n = 1 .. 2048)
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(n = 1 .. 2048)

For n = 2048
area is ~75%
white space

Use for processor 
(cores, controllers,
routers, NoC, etc.)
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(n = 1 .. 2048)

For n = 2048
area is ~75%
white space

Use for processor 
(cores, controllers,
routers, NoC, etc.)

Monolithic  
Not Die-Stacked
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Note: ACTUALLY*  
Real DRAM Latency  
is Quite Long

This is for single core. Multicore can be much, much worse.

 9

590 Memory Systems: Cache, DRAM, Disk

problems with the CPRH scheduling algorithm for 
other workloads. Figure 15.38 shows the latency dis-
tribution curve for 188.ammp, and 188.ammp was 
one workload that points to possible issues with the 
CPRH algorithm. Figure 15.38 shows that the CPRH 
scheduling algorithm resulted in longer latencies for 
a number of transactions, and the number of trans-
actions with memory-access latency greater than 400 
ns actually increased. Figure 15.38 also shows that 
the increase of a small number of transactions with 
memory-access latency greater than 400 ns is offset 
by the reduction of the number of transactions with 
memory transaction latency around 200 ns and the 
increase of the number of transactions with mem-
ory-access latency less than 100 ns. In other words, 
the CPRH scheduling algorithm redistributed the 
 memory-access latency curve so that most memory 
transactions received a modest reduction in access 
latency, but a few memory transactions suffered a 
substantial increase in access latency. The net result 
is that the changes in access latency cancelled each 
other out, resulting in limited speedup for the CPRH 
algorithm over the FCFS algorithm for 188.ammp. 

15.5 A Latency-Oriented Study
In the previous section, we examined the impact 

of transaction ordering on the memory-access 
latency distribution for various applications. Memory 
 controller schedulers typically attempt to maximize 
performance by taking advantage of memory applica-
tion access patterns to hide DRAM-access penalties. 
In this section, we provide insight into the impact that 
DRAM architectural choices make on the average read 
latency or memory-access latency. We briefl y examine 
how the choice of DRAM protocol impacts memory 
system performance and then discuss in detail how 
aspects of the memory system protocol and confi gu-
ration contribute to the observed access latency.4

15.5.1 Experimental Framework
This study uses DRAMSim, a stand-alone memory 

subsystem simulator. DRAMSim provides a detailed 
execution-driven model of a Fully Buffered (FB) 
DIMM memory system. The simulator also sup-
ports the variation of memory system parameters of 
interest, including scheduling policies and memory 
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FIGURE 15.38: Impact of scheduling policy on memory-access latency distribution: 188.ammp.

4Some of this section’s material appears in “Fully-Buffered DIMM memory architectures: Understanding mechanisms, 
overheads and scaling,” by B. Ganesh, A. Jaleel, D. Wang, and B. Jacob. In Proc. 13th International Symposium on High 
Performance Computer Architecture (HPCA 2007). Phoenix, AZ, February 2007. Copyright IEEE. Used with permission.
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Example Monolithic Numbers
~64 cores, ~256GB ReRAM, ~4k banks 
Assume 200ns latency for 8-byte payload: 

Bandwidth = 4k * 8 bytes / 200ns  
= 4k * 40 MB/s 

= 160 GB/s 
e.g., 64 cores, each 4-way multithreaded,  
each with 512-bit (8-longword) SIMD,  
vectored & scatter-gather loads,  
4-deep non-blocking => 8k

 10
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So what all does this enable?
HBM/HMC: hugely parallel systems  
(the duality of bandwidth and parallelism), 
streaming applications, 2x performance 
NVMM: massive data sets, new OS 
paradigms such as merged VM+FS and 
journaled main memory  
(built-in checkpoint/restart) 
HBNV: fine-grained operations on 
enormous sparse data sets

16
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Datacenter & Cloud Issues
Distribution at storage-level interface 
simplifies application development 
Potential for significant performance 
RoCE appropriate for supercomputing?  
How about RoXX? 
At what round-trip latency does this 
rival MPI as programming model? 
Expect a shake-up soon.

�22
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Nonvolatility Issues
Unified VM+FS Subsystems (OS redesign) 
➡ By default, data in process address space 

temporary, garbage-collected at exit(); 
permanentify function to keep around 

➡ Possible directions: 
• Persistent objects (e.g. Mneme, POMS)  

[failed only due to reliance on disk] 
• Named regions 

➡ Journaled main memory w/ checkpointing

 22
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Capacity Issues
Rethink Protection & Translation 
➡ TLB overhead is ~20% 

• So get rid of it already! 
• BUT: need protection, authentication 

➡ Why not waste bits? Simplify both sharing 
and translation by eliminating much of VM 

➡ OS/HW co-design needed: e.g., sharing via 
vaddr instead of paddr, language support? 
Might make MPI less painful?

 23

Recall: Nonvolatile main memories ~TB per node
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Bottom Line
It’s going to happen. :) 
• Combined VM+FS subsystems 
• Journaled main memory  
• Persistent Object Store work from 80s 
• OS: Simpler design, fewer potential bugs 
• VM arguably a way better abstraction  

to distribute than the FS 
• Monolithic = good for many applications

 13
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… and the storage guys 

are showing us the way!
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Call For Papers www.memsys.io Call For Papers

The International Symposium on Memory Systems v October 1–4, Washington DC

MEMSYS 2018
Important Dates 
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