Bruce Jacob

University of Maryland

SLIDE

All Tomorrow's Memories Bruce Jacob **Keystone Professor** University of Maryland

All Tomorrow's Memories

Bruce Jacob

University of Maryland

Bruce Jacob

University of Maryland

SLIDE 2

Stealth Revolution

Page Mapping Garbage Collection Wear Leveling

> Other FTL Functions

Application

Operating System VM + FS

Bruce Jacob

University of Maryland

SLIDE 2

Stealth Revolution

Page Mapping Garbage Collection Wear Leveling

> Other FTL Functions

Fusion-ish SSD

Application

Operating System VM + FS

All Tomorrow's Memories

Bruce Jacob

University of Maryland

SLIDE 2

Other FTL Functions

Fusion-ish SSD

Application

Operating System VM + FS

Page Mapping Garbage Collection Wear Leveling

All Tomorrow's Memories

Bruce Jacob

University of Maryland

All Tomorrow's Memories

Bruce Jacob

University of Maryland

Bruce Jacob

University of Maryland

Bruce Jacob

Stealth Revolution

Question: where is data? Answer: <data owner> To data owner: read X To requester: mem[X]

Bruce Jacob

Stealth Revolution

[DATA]

Question: where is data? Answer: <data owner> To data owner: read X

To requester: mem[X]

Major implications for OS and applications

Bruce Jacob

Stealth Revolution

[DATA]

Question: where is data?

Answer: <data owner>

To data owner: read X

Major implications (esp. considering (esp. considering) (esp. sion-io like) for OS and applications

CPU

FPGA

GPU

Bruce Jacob

University of Maryland

SLIDE 5

Fine-Grained Access Bandwidth Capacity Low Power Nonvolatility_

*Things we did and/or are doing now (I'll cover in talk)

Background: Wish List DRAM -HBM/HMC*

Flash, 3DXP, RRAM, PCM, etc - NVMM*

HB

Bruce Jacob

University of Maryland

SLIDE 5

Background: Wish List DRAM -HBM/HMC*

Flash, 3DXP, RRAM, PCM, etc - NVMM*

Major implications for OS* and applications

*Things we did and/or are doing now (I'll cover in talk)

Bruce Jacob

University of Maryland

SLIDE 6

Background: Memory Latency

tRP = 15ns

Bank Precharge

TIME

tRCD = 15ns, tRAS = 37.5ns

Row Activate (15ns) and Data Restore (another 22ns)

Cost of access is high; requires significant effort to amortize this over the (increasingly short) payoff.

Background: Memory Latency

All Tomorrow's Memories

Bruce Jacob

University of Maryland

Hybrid Memory Cube

VAULT (channel)

Partitions (ranks)

Logic Base (I/O & CTL)

Off-chip: high speed SerDes and generic protocol

4 I/O Ports, up to 80 GB/s each

Next gen is 160 GB/s per (640 total)

Total conc'y = **16 x 8 x 2..8** (256–1024)

High Bandwidth Memory Uses a simple '2.5D' instead of full 3D stacking **TSV Stack** Up to 4 or 8 DRAM dies HBM DRAMs HBM 1024-bit x 2Gtps Interface *= 256 GB/sec* **GPU/CPU TSV Interposer**

Each Link is 128 Bits Wide: 1024 Total

All Tomorrow's Memories

Bruce Jacob

University of Maryland

SLIDE 9

High Bandwidth Memory DRAM DRAM DRAM DRAM **CPU/ASIC** DRAM

Bruce Jacob

University of Maryland

SLIDE 10

Performance Comparison

Note: wear-out mitigated by using MANY de (thousands). A single device would wear out in unde days; therefore, 1000 devices should last for at least a Next, you can trade off longevity for access time and wea if the data need only last hours or minutes, wearout is rec

Non-Volatile Main Memory

Cost fo	or Size of IO GB	F Power for I0 GB	Power per GB/s
\$1,000	0 I bucke	et 0.I-IW	0.I W
\$100		1 I W	0.I W
\$10	<l chip<="" th=""><th>) ()</th><th>0.I W (?)</th></l>) ()	0.I W (?)
\$40	<l chip<="" th=""><th>) ()</th><th>0.I W (?)</th></l>) ()	0.I W (?)
		CPU DDRx SDRAN Last-Level Cas	1 che
evices er two a year. earout: duced.	N (0	NAND Flash Main Memory (or *any* source of cheap bits)	

Bruce Jacob

University of Maryland

SLIDE 12

A Tale of 3 Memory Systems

Bruce Jacob

University of Maryland

SLIDE 12

A Tale of 3 Memory Systems

FTL – Flash

32G DRAM

Bruce Jacob

University of Maryland

Bruce Jacob

University of Maryland

High Bandwidth Non Volatiles Borrow a page from the HMC playbook **Network Fabric** MC MC MC MC MC **NV ReRAM:** up to 1000ns expected* *trade-offs?

All Tomorrow's Memory Systems

Bruce Jacob

University of Maryland

All Tomorrow's Memory Systems

Bruce Jacob

University of Maryland

SLIDE 6

Crossbar 3D ReRAM

Cells minimum area (<u>no access transistor</u>)
2-stack arrays @ 16nm, 20 x 20 mm die: 64GB of ReRAM
8-stack arrays => 256 GB of ReRAM
Stacks arbitrarily high
No. Access. Transistor.

No Access Transistor1T1R Memory ArrayLow Latency, Low DensityHigh Performance, High Density

1T1R

Crossbar RRAM Technology

All Tomorrow's Memories

Bruce Jacob

University of Maryland

SLIDE 17

1TnR

(n=8)

No Access Transistor

All Tomorrow's Memories

Bruce Jacob

University of Maryland

Bruce Jacob

University of Maryland

SLIDE 18

(n = 1 .. 2048) (n=8)

For n = 2048 area is ~75% white space

> Use for processor (cores, controllers, routers, NoC, etc.)

All Tomorrow's Memories

Bruce Jacob

University of Maryland

SLIDE 18

1TnR (n = 1 .. 2048) (n=8)

1TnR (n = 1 .. 2048) (n=8)

Bruce Jacob

University of Maryland

Bruce Jacob

University of Maryland

SLIDE 20

Example Monolithic Numbers ~64 cores, ~256GB ReRAM, ~4k banks Assume <u>200ns</u> latency for <u>8-byte</u> payload: Bandwidth = 4k * 8 bytes / 200ns

4-deep non-blocking => 8k

- = 4k * 40 MB/s = <u>160 GB/s</u>
- e.g., 64 cores, each 4-way multithreaded, each with 512-bit (8-longword) SIMD, vectored & scatter-gather loads,

journaled main memory

enormous sparse data sets

All Tomorrow's Memories

Bruce Jacob

University of Maryland

SLIDE 21

So what all does this enable?

- **<u>HBM/HMC</u>**: hugely parallel systems (the duality of bandwidth and parallelism), streaming applications, 2x performance
- <u>NVMM: massive data sets, new OS</u> paradigms such as merged VM+FS and (built-in checkpoint/restart)
- **HBNV: fine-grained operations on**

Expect a shake-up soon.

All Tomorrow's Memories

Bruce Jacob

University of Maryland

SLIDE 22

Datacenter & Cloud Issues

- Distribution at storage-level interface simplifies application development
- Potential for significant performance
- RoCE appropriate for supercomputing? How about RoXX?
- At what round-trip latency does this rival MPI as programming model?

Bruce Jacob

University of Maryland

SLIDE 23

- Nonvolatility Issues Unified VM+FS Subsystems (OS redesign) By default, data in process address space temporary, garbage-collected at exit(); permanentify function to keep around
- ➡ Possible directions:

 - Persistent objects (e.g. Mneme, POMS) [failed only due to reliance on disk] Named regions

Journaled main memory w/ checkpointing

Capacity Issues \rightarrow TLB overhead is ~20%

All Tomorrow's Memories

Bruce Jacob

University of Maryland

SLIDE 24

Rethink Protection & Translation

- So get rid of it already!
- BUT: need protection, authentication
- Why not waste bits? Simplify both sharing and translation by eliminating much of VM
- → OS/HW co-design needed: e.g., sharing via vaddr instead of paddr, language support?
- Recall: Nonvolatile main memories \sim TB per node

Bottom Line It's going to happen. :)

- Combined VM+FS subsystems
- Journaled main memory
- Persistent Object Store work from 80s
- OS: Simpler design, fewer potential bugs
- VM arguably a <u>way</u> better abstraction to distribute than the FS
 - Monolithic = good for many applications

All Tomorrow's Memories

Bruce Jacob

University of Maryland

All Tomorrow's Memories **Bottom Line** Bruce Jacob

University of Maryland

2

SLIDE 25

Jourp

Shameless Plug

Washington DC Oct 2019

All Tomorrow's Memory Systems

Bruce Jacob

University of Maryland

SLIDE 26

MEMSYS 2018

The International Symposium on Memory Systems * October 1–4, Washington DC

Important Dates

Memory-device manufacturing, memory-architecture design, and the use of memory technologies by application software all profoundly impact today's

www.memsys.io

(sigconf), blind submission (no authors listed), up to 16 pages long

Organizers

Bruce Jacob, U. Maryland Kathy Smiley, Memory Systems

Rajat Agarwal, Intel Abdel-Hameed Badawy, NMSU omputing systems, in terms of their performance, ty, predictability, power dissipation, and cost. Existing)gies are seen as limiting in terms of power, capacity, and ging memory technologies offer the potential to overcome and design-related limitations to answer the requirements applications. Our goal is to bring together researchers, l others interested in this exciting and rapidly evolving ich other on the latest state of the art, to exchange ideas, ure challenges. Visit memsys.io for more information.

rest

lished papers containing significant novel ideas and are solicited. Papers focusing on system, software, and concepts, outside of traditional conference scopes, will be

preferred over others (e.g., the desired focus is away from pipeline design, processor cache design, prefetching, data prediction, etc.). Symposium topics include, but are not limited to, the following:

- Memory-system design from both hardware and software perspectives
- Memory failure modes and mitigation strategies
- Memory-system resilience, especially at large scale
- Memory and system security issues
- Operating system design for hybrid/nonvolatile memories

RAM, 3DXP, memristors, etc. nguages, optimization memory technologies rdware, software, mitigation rage/memory/accelerators ment techniques rdware and software, olications latacenter applications e-memory machines

echnologies to support them, d heterogeneous memories side of traditional

ideas that oups—to eople, ople and pt extended 1 papers, and each

acm

Jishen Zhao, UC San Diego

ven a 20 minute presentation time slot. All accepted papers will be published in the ACM Digital Library.

Bruce Jacob

University of Maryland

SLIDE 27

Thank You! Bruce Jacob blj@umd.edu www.ece.umd.edu/~blj

