
Memory-System Design Challenges in Realizing Monolithic
Computers

Meenatchi Jagasivamani
Candace Walden
Devesh Singh
Luyi Kang
Shang Li

Department of Electrical & Computer
Engineering, University of Maryland,

College Park, MD

Mehdi Asnaashari
Sylvain Dubois

Crossbar, Inc., Santa Clara, CA

Bruce Jacob
Donald Yeung

Department of Electrical & Computer
Engineering, University of Maryland,

College Park, MD

ABSTRACT
This paper presents the notion of a monolithic computer, a future
computer architecture in which a CPU and a high-capacity main
memory system are integrated in a single die. Such computers will
become possible in the near future due to emerging non-volatile
memory technology. In particular, we consider using resistive ran-
dom access memory, or ReRAM, from Crossbar Incorporated.

Crossbar’s ReRAM is dense, fast, and consumes zero static power.
Also, it can be fabricated in a standard CMOS logic process, allowing
it to be integrated into a CPU’s die. The ReRAM cells are manufac-
tured in between metal wires and do not employ per-cell access
transistors, so the bulk of the transistors underneath the ReRAM ar-
rays are vacant. This means a CPU can be implemented using a die’s
logic transistors (minus transistors for access circuits), while the
ReRAM can be implemented “in the wires” above the CPU. This will
enable massive memory parallelism, as well as high performance
and power efficiency.

We discuss several challenges that must be overcome in order to
realize monolithic computers. First, there is a physical design chal-
lenge of merging ReRAM access circuits with CPU logic. Second,
while Crossbar’s ReRAM technology exists today, it is currently
targeted for storage. There is a device challenge to redesign Cross-
bar’s ReRAM so that it is more optimized for CPUs. And third, there
is an architecture challenge to expose the massive memory-level
parallelism that will be available in the on-die ReRAM. This will
require highly parallel network-on-chip and memory controller
designs, and a CPU architecture that can issue memory requests at
a sufficiently high rate to make use of the memory parallelism.

ACM Reference Format:
Meenatchi Jagasivamani, Candace Walden, Devesh Singh, Luyi Kang, Shang
Li, Mehdi Asnaashari, Sylvain Dubois, Bruce Jacob, and Donald Yeung. 2018.
Memory-System Design Challenges in Realizing Monolithic Computers. In
Proceedings of International Symposium on Memory Systems (MEMSYS’18).
ACM,NewYork, NY, USA, 7 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MEMSYS’18, October 2018, Washington, D.C. USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The primary means by which computer hardware improves is via
increased integration due to Moore’s Law scaling. Over the years,
Moore’s Law has provided a steady improvement in computer hard-
ware, but along theway, there have been notable points of disruptive
change. These have occurredwhen significant components of a com-
puter system become integrated onto a single die. For example, in
the 1970s, themicroprocessor enabled a single-die central processing
unit (CPU). A more recent example is themulticore processor, which
enabled single-die multiprocessors as well as single-die supercom-
puters, if one considers GPUs. In all of these cases, the integration
of major compute blocks, previously fabricated in discrete chips,
yielded significantly faster, less power hungry, physically smaller,
and more reliable computer systems. Each of these benefits can be
quite significant by itself, but having all of them occur at the same
time can cause disruptive change in computing capabilities.

In this paper, we argue that we are on the cusp of another quan-
tum leap in computing capability. This time, it will occur as the
last major discrete component of a computer system moves into
the CPU die: main memory. This will allow a complete computer–
including multiple cores and a high-capacity memory system–to
exist monolithically (i.e., in a single die, not just across stacked dies).
We refer to such computer chips asmonolithic computers. This form
of integration is inherently different from 3D-stacking of discrete
dies [1].

Monolithic computers will facilitate physical proximity between
the CPU andmain memory that is unprecedented, enabling extreme
wire density for implementing the CPU / main memory interface.
This will allow massive memory parallelism which will improve
performance, especially for highly parallel CPUs. The physical prox-
imity between CPU andmainmemorywill also permit lower energy
per memory access since all memory transactions will traverse min-
imally sized wires. This will lead to much higher power efficiency,
especially for memory-intensive workloads. And, monolithic com-
puters will exhibit a smaller form factor since they require fewer
discrete components, which will benefit embedded applications.
Lastly, a reduction in the number of discrete components will also
reduce failure rates, improving reliability. We believe all of these
benefits will enable transformative change in computer systems’
capabilities.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

MEMSYS’18, October 2018, Washington, D.C. USA
Meenatchi Jagasivamani, Candace Walden, Devesh Singh, Luyi Kang, Shang Li, Mehdi Asnaashari, Sylvain Dubois, Bruce Jacob,

and Donald Yeung

1.1 CPU - Main Memory Integration
A modern computer’s main memory system is comprised of many
discrete DRAM chips, integrated either into the CPU package via a
silicon interposer or in separate packages on the system mother-
board. While DRAM is an extremely mature technology, its contin-
ued scaling to advanced technology nodes is proving difficult. As a
result, researchers have been investigating new memory technolo-
gies that may eventually replace DRAM. One promising candidate
is resistive-memory based nonvolatile technology, such as resistive
random access memory or ReRAM. A notable example is the 3D
ReRAM from Crossbar, Incorporated. ReRAM is extremely dense,
surpassing DRAM densities; it consumes zero power when idle; and
it is relatively fast, currently able to achieve latencies in the 100s of
nanoseconds. ReRAM is also much more scalable than DRAM, so
its capacity and power advantages (along with its speed) will only
improve over time.

Another interesting characteristic of ReRAM is that it can be
fabricated in a standard CMOS logic process,1 allowing it to be in-
tegrated into a CPU’s die. Figure 1 illustrates how ReRAM can exist
monolithically with the CPU. As shown in Figure 1a, the ReRAM
memory cells are manufactured in between metal wires–i.e., at the
intersection of wires laid out perpendicularly in adjacent VLSI lay-
ers. Crossbar ReRAM bitcells are impervious to data-disturbance
from access to adjacent column bit-cells as well as any logic activ-
ity from transistors beneath them. This gives rise to the so-called
“crosspoint architecture.” Rather than isolate individual ReRAM cells
using access transistors, isolation is provided by per-cell “selector
devices” integrated in the crosspoint arrays. The use of selector
devices instead of access transistors enables extremely small mem-
ory cells. It also enables stacking of ReRAM cells vertically across
multiple metal layers (see Figure 2), leading to very dense memory
arrays. (We envision 100–200 GB of ReRAM could fit in a CPU die
today, with even higher capacities possible as technology scales).
But, it also means the silicon area underneath the ReRAM are free for
implementing non-memory circuits, like CPU logic. Some logic is still
needed per ReRAM “sub-array” for access circuitry (i.e., decoders
and sense amplifiers) but the bulk of the transistors are unused, as
shown in Figure 1b. Hence, a CPU can be implemented in the die’s
logic transistors (minus those needed for ReRAM access circuits),
while the ReRAM can be implemented “in the wires,” floating above
the CPU across the entire die.

The extreme physical proximity between the CPU and its mono-
lithically integrated main memory system in Figure 1 will poten-
tially enable massively parallel memory access. An important goal
for monolithic computers is to realize this memory parallelism ca-
pability. This will require developing a highly parallel as well as
a high throughput ReRAM memory structure. It will also require
developing a CPU architecture that can sustain a high enough mem-
ory access rate to exploit all of the extant memory parallelism. We
believe tiled CPU architectures, as illustrated in Figure 1c, are a good
starting point for this purpose. Tiled CPUs, such as Intel’s Phi [2] or
Tilera’s Tile processor [3], are comprised of multiple compute tiles
interconnected across a 2D mesh network-on-chip (NOC), with
each tile incorporating a NOC router that connects the tile to its
nearest neighbors. (See Figure 1d). Due to their scalability, tiled

1In contrast, DRAM requires specialized memory fabrication processes

architectures can support a large volume of memory traffic across
the on-die NOC.

Of course, memory requests must eventually access main mem-
ory, which on existing tiled CPUs requires going off-die or off-
package to discrete DRAM chips. Typically, a small number of
DRAMmemory controllers located at the periphery of the 2D mesh
service such memory requests, which can become a bottleneck.
For a monolithic computer, we propose to incorporate the memory
controllers (MCs) into the compute tiles themselves, as shown in
Figure 1d, with each MC responsible for servicing the requests to
the ReRAM sub-arrays directly above the MC’s compute tile.

To realize our monolithic computer concept, several challenges
spanning multiple system abstraction layers, including physical
design, devices, and architecture, must be overcome. In this paper,
we discuss these challenges. The discussion proceeds by abstraction
layer: Section 2 discusses physical design challenges, Section 3
discusses device challenges, and Section 4 discusses architecture
challenges. Then, Section 5 concludes the paper.

2 PHYSICAL DESIGN CHALLENGE
Although the ReRAM memory cells of a monolithic computer are
fabricated within the metal layers of a VLSI process, their access
circuits must be integrated with the CPU’s logic circuits. Hence,
there is a challenge of how best to layout the access circuitry and
CPU logic together. We refer to the process of physically laying out
the access circuitry and CPU logic as “CPU-ReRAM stitching.”

An important characteristic of ReRAM affecting CPU-ReRAM
stitching is overhead. Access circuits, consisting of address decoders,
wordline drivers, sense amplifiers, and mechanisms for driving
locally sensed data to global buffers, are required for every ReRAM
sub-array. The area overhead of these access circuits depends on
the sub-array size. Larger sub-arrays permit greater amortization of
the access circuits’ area, and leave more area for CPU circuits. For
the largest sub-arrays, Crossbar estimates that roughly one quarter
of the area underneath each sub-array is needed to implement
the access circuits, leaving three quarters of the area unused and
available for compute logic. In other words, the access circuits incur
non-trivial overhead, but the majority of die area is still available
for building CPU logic.

We conducted a preliminary physical design study to illustrate
the CPU-ReRAM stitching problem. In particular, we tried stitching
ReRAMwith a small synthesized core–i.e., the RISC-V VSCALE core
from U.C. Berkeley [4]. We performed the Auto-Place-and-Route
(APR) using the open-source NCSU FreePDK 45nm process design
kit and the Nangate open source digital library for the 45nm process
node.We first generated the APR layout for the original RISC-V core.
Then, we added a constraint in the form of 4 ReRAM sub-arrays
located above the core. Each array has its access circuitry clustered
along two of its sides. To minimize the interference with the core,
we tried arranging the sub-arrays’ access circuits back-to-back via
rotations of 0, 90, 180, and 270 degrees. The total blocked-out area of
the abutted access circuits is roughly 25% of the combined sub-array
areas. (The area for the storage cells is not masked out because it
lies in the metal layers directly above the array’s access circuitry
as well as the transistors of the core). After adding the constraints,
we re-generated the RISC-V core layout.

Memory-System Design Challenges in Realizing Monolithic Computers MEMSYS’18, October 2018, Washington, D.C. USA

Monolithic ReRAM - CPU Die

Compute tiles

ReRAM
Memory

 MT
 Core

Cache

 SIMD
units

Router Memory
Controller

Senseamp
Selector device

ReRAM cell

Free transistors for
non-memory circuits

a).

c).

b). d).

Figure 1: A ReRAM-based monolithic computer. a). ReRAMmemory cells and selector devices. b). Integration over logic. c). A
tiled CPU plus ReRAMmain memory. d). Each compute tile integrates its own memory controller.

Figure 2: ReRAM arrays can be stacked vertically using ad-
ditional metal layers to increase memory density and paral-
lelism.

Figure 3 shows the final layout, including the routed wiring
for the RISC-V core as well as the 4 mirrored ReRAM sub-arrays.
Despite introducing a non-trivial blocked-out area for the ReRAM
access circuits, the design tools were still able to successfully route
the design. Overall, we found that the area of the core expands by
11.3% due to the introduction of the ReRAM. Given the area for the
access circuits, the total area impact of introducing the ReRAM is
about 36%. We believe this is an acceptable cost considering that
we are integrating an entire main memory system into the CPU
die.

This preliminary study illustrates the physical design problem
of CPU-ReRAM stitching that designers will need to address in
order to realize monolithic computers. But eventually, designers
will need to consider much larger and more realistic cores. Given
larger cores, there will be many more ReRAM sub-arrays stitched

Figure 3: Placed & routed RISC-V VSCALE (integer) core and
four ReRAM sub-arrays.

into the core (not just the 4 sub-arrays in Figure 3). There will
also be a need to consider stitching ReRAM into regular structures,
such as SRAMs. (The RISC-V core in Figure 3 does not include any
cache). In addition, while we have only looked at area impact, it will
be necessary to quantify the impact in terms of delay and power
consumption as well.

3 DEVICE CHALLENGE
Crossbar, Incorporated has been manufacturing ReRAM commer-
cially for over 3 years. The left side of Figure 4 shows a wafer

MEMSYS’18, October 2018, Washington, D.C. USA
Meenatchi Jagasivamani, Candace Walden, Devesh Singh, Luyi Kang, Shang Li, Mehdi Asnaashari, Sylvain Dubois, Bruce Jacob,

and Donald Yeung

Figure 4: Crossbar ReRAM wafer and chip cross-section.

manufactured by Crossbar, and the right side shows a cross-section
of one of their memory chips. As these photos demonstrate, the
memory technology needed for monolithic computers largely ex-
ists. But Crossbar’s current ReRAM cells are designed for storage
devices, not CPUs. As such, there are drawbacks with using exist-
ing ReRAM for CPU main memory. One drawback is high access
latency.

ReRAM’s access latency depends on the sub-array size. Larger
sub-arrays incur higher latencies whereas smaller sub-arrays in-
cur lower latencies due to the impact of wire length on delay. For
example, the blue curve in Figure 5 plots latency versus sub-array
size (square-root of the number of ReRAM cells) for existing Cross-
bar ReRAM implemented in a 28nm technology node. Latencies
of 200-300ns are achievable, which while high, at least begin to
approach DRAM latencies. But these latencies are only possible
given very small ReRAM sub-arrays. As discussed in Section 2,
larger sub-arrays (corresponding to the right-hand side of Figure 5)
are needed for area efficiency. Unfortunately, for larger sub-arrays,
latencies are in the 1-2µs range, which are too high for CPUs. Worse
yet, the latencies reported in Figure 5 are for reads. Write latencies
are another 2x higher.

An important challenge in realizing monolithic computers is
to re-design existing ReRAM cells so that they are better suited
to CPUs. The design space for ReRAM memory cells is complex,
involving numerous device parameters. Up until now, Crossbar has
made tradeoffs within this design space that are inappropriate for
CPUs because the design target has been storage. One example of
this is current Crossbar memories exhibit a retention of 10 years,
which is over-kill for CPU main memory. By making different
design tradeoffs, more CPU-friendly characteristics can be achieved.
For example, Crossbar estimates that a re-design of their ReRAM
cells can result in latencies between 200-700ns , even for the largest
sub-arrays in Figure 5.

In addition to latency, another drawback of using existing ReRAM
for CPU main memory is its low endurance. Current ReRAM mem-
ory cells can sustain 106 writes. While this is quite good for non-
volatile memory, it is not good enough for CPU main memory.
Again, as with latency, the endurance of ReRAM is currently tuned
for storage devices. Much higher endurance could be achieved if
ReRAM were to be redesigned with CPU main memory in mind. As
mentioned above, current Crossbar ReRAM exhibits an extremely

Delay
(usec)

0.1

0.2 0.3 0.3
0.5

0.7
1.2

2.2

1 32 64 128 256 512 1K 2K
0

1

10

Die Area
(mm2)

1

10

100

Sub-Array Size

Figure 5: ReRAM read latency and area vs. sub-array size.

Figure 6: ReRAM sub-arrays have a small access granularity.

high retention. This can be traded off for better endurance–for ex-
ample, by reducing how strongly bits are written into the ReRAM
cells.

Overall, developing ReRAM device technology so that it is better
matched to CPU requirements is crucial for realizing monolithic
computers. The goal is to create a low-retention ReRAM cell that
exhibits both high speed and high endurance.

4 ARCHITECTURE CHALLENGE
At the architecture level, a key challenge is exposing the mas-
sive memory-level parallelism that will be available in the on-die
ReRAM. We anticipate that on a large CPU die, there could be 10s
of thousands of ReRAM sub-arrays integrated in the die, each pro-
viding an independent memory access point. What’s more, each
sub-array may contain up to 8 vertically stacked ReRAM layers
(Figure 2), providing additional memory access parallelism. (Not
all 8 layers will be independent since adjacent layers share wires,
but every other layer could be accessed independently). All told,
there could be over 100K independent memory access points in an
on-die ReRAM memory system.

The actual parallelism available to the CPU, though, will depend
on how many sub-arrays are activated per memory transaction.
Each ReRAM sub-array provides very little data per access, so mul-
tiple sub-arrays–i.e., a ReRAM bank–must be activated together to

Memory-System Design Challenges in Realizing Monolithic Computers MEMSYS’18, October 2018, Washington, D.C. USA

0

20

40

60

80

100

120

140

0 0.2 0.4 0.6 0.8 1

8x8 12x12 16x16 20x20

Re
qu

es
ts

 /
Cy

cl
e

Message Distance

65.5 reqs/cycle

Figure 7: NOC throughput as a function of message distance
for different mesh network sizes.

increase the fetch granularity. Figure 6 shows why.When activating
a sub-array, an entire row or “page” of memory cells is selected,
but only the cells at crosspoints of interest are accessed. Due to
limitations in the word-line current, the number of crosspoints that
can be active in the same page is quite small, e.g. 4 – 8 bits. This
means fetching a 64-byte cache block requires activating at least
64 ReRAM pages, requiring banks of 16 sub-arrays each (assuming
4 ReRAM pages can be accessed in parallel per 8-stack sub-array).
Banks with a smaller number of sub-arrays are possible if the mem-
ory system supports fine-grained accesses. For example, fetching
8-byte double words would only require activating 8 ReRAM pages,
allowing banks to contain 2 sub-arrays each. Depending on the
bank size, the memory system could support from thousands to
small 10s of thousands of independent memory requests across the
100K+ sub-arrays that we anticipate having in the CPU die.

Supporting all of this memory parallelism will place significant
stress on the network-on-chip and memory controllers in our tiled
architecture that was discussed in Section 1.1. Moreover, being
able to drive all of this memory parallelism will require CPU cores
that can source a tremendous number of simultaneous memory
requests. In this section, we discuss the architecture-level challenges
we expect in the NOC, MC, and cores of a monolithic computer.

4.1 Network-On-Chip
We begin by looking at challenges in the NOC design for a mono-
lithic computer. Most existing tiled CPUs employ simple NOC
topologies, such as the 2D mesh. Unfortunately, we find that simple
2D meshes will have trouble sustaining the levels of memory traffic
that may be possible in monolithic computers.

To quantify, we built a 2D-mesh NOC and ReRAM simulator. We
configured the simulator to model a large number of ReRAM banks,
32K, grouped into tiles that each contain a single mesh router and
MC, just like in Figure 1. At each NOC router, we injected memory
requests as fast as possible, thus driving the NOC to its maximum
throughput. (We only simulated the request messages, omitting
the replies from the ReRAM for these experiments). Each injected
memory request is destined to a random ReRAM bank on a random
tile some maximum distance away from the originating tile. We
varied the number of tiles, thus changing the number of routers,

and hence, the messaging capacity of the NOC.2 We also varied
the maximum distance that messages can travel, thus changing
the physical locality of the memory requests. Figure 7 plots the
throughput achieved in memory requests per cycle as a function
of message distance (“0” means all messages only go to the local
tile, while “1” means messages can travel to any tile on the NOC).
Results are plotted for four different NOC sizes: 64, 144, 256, and
400 tiles.

Figure 7 shows throughput is high as long as there is good local-
ity (i.e., distance = 0). But as memory requests are allowed to travel
farther and farther away, throughput drops precipitously. This is
due to the inherently low messaging capacity of 2D meshes, result-
ing in network contention. For all-to-all communication (distance =
1.0), contention becomes severe, and the throughput drops as much
as 6x below its peak.

An important question is: what throughput does the NOC need
to support for a monolithic computer? While actual throughput
requirements will be application dependent, one possible bench-
mark is the messaging rate needed to keep all of the banks in the
on-die memory system busy. For example, given 32K banks, and
assuming each bank incurs a 500ns access latency, the theoretical
throughput that would saturate all of the banks is 32K ÷ 500ns =
65.5 memory requests per cycle (at a 1 GHz clock rate). This is an
extremely high throughput. As Figure 7 shows, even for modest
levels of contention (i.e., at a message distance of just 0.3), none of
the 2D meshes can achieve a 65.5 requests per cycle throughput
(dotted line in Figure 7). Even for large 20x20 NOCs, the 2D mesh
is unable to support the memory traffic needed to keep all of the
on-die ReRAM banks busy.

A major challenge is to design a NOC that can support the high
memory request rates of monolithic computers. Given the limita-
tions of 2D meshes shown in Figure 7, alternative network topolo-
gies, possibly with higher dimensionality, will likely be needed.
Along with dimensionality, it may be helpful to scale the number
of network nodes as well. This may result in designs for which
there are more routers than cores (as opposed to the single-router
per core baseline in Figure 1). Designing such high-throughput
NOCs must be done with area and power limitations in mind. One
of the great challenges of monolithic computers is that the entire
computer system must fit on a single die. Hence, area and power of
the NOC design will be crucial.

4.2 Memory Controller
As with the NOC, a significant challenge for the MC is how to
balance circuit size against need for parallelism. And similar to
the NOC, one way to strike the best balance may be to decouple
the MCs from the cores (and possibly the NOC too), allowing a
different number of MCs compared to cores. At one extreme, a
system design can have one MC per ReRAM bank (e.g., 32K); at
the other extreme, one could have a single controller capable of
queueing up that many requests. The disadvantage of the first
scenario is the large amount of circuitry required (the die would
be almost entirely memory controllers); the disadvantage of the
second is the limited parallelism provided by the arrangement: a

2The MCs were configured with 0 latency and infinite bandwidth to remove MC
contention effects.

MEMSYS’18, October 2018, Washington, D.C. USA
Meenatchi Jagasivamani, Candace Walden, Devesh Singh, Luyi Kang, Shang Li, Mehdi Asnaashari, Sylvain Dubois, Bruce Jacob,

and Donald Yeung

controller can only handle one request at a time, so traffic spikes
result in long delays.

We seek a system of controllers that can accomplish several very
important tasks that pull the design in opposite directions:
• The number of controllers is minimal, to minimize both the
number of access points on the NoC and the amount of
controller circuitry required chip-wide
• The number of controllers is optimized to handle the number
of simultaneous memory requests originating from all the
CPU’s cores, including scenarios of all-to-all communication,
as is considered in Figure 7

These design constraints pull in opposite directions: having fewer
controllers reduces circuitry, but having more controllers increases
available parallelism, thus lowering queueing delays and end-to-end
latency.

Because the number of controllers may or may not equal the
number of cores, one of the primary design considerations will
be intertwined with the design of the NOC: should controllers
lie “behind” the core, as in traditional distributed shared memory
architectures, or should the controllers be first-class endpoints
on the network-on-chip? This is a very important consideration,
because initial calculations show that the number of banks could
exceed the number of cores by 2–3 orders of magnitude, and thus
the number of controllers could easily be ten times the number of
cores. Arguably, raising the memory subsystems (the controllers
and their banks, each representing a subset of the total memory
system) to the level of “peer” on the network would provide a
seamless design space covering application behaviors ranging from
a large number of independent, non-cooperating processes, to large-
scale multi-threaded applications with all-to-all communication and
sharing patterns. Note that DRAM systems such as Rambus [5] and
Hybrid Memory Cube [6] have explored this type of main memory
architecture, and Storage Area Networks have explored the same
architecture at the file-system level. Similar approaches can be used
for organizing the on-die ReRAM of a monolithic computer.

4.3 Cores
To realize the massive memory parallelism that will be available in
monolithic computers, not only do we need the NOC and MC tech-
niques discussed in Sections 4.1 and 4.2, but we also need compute
cores that can inject memory requests into the memory system
at a sufficiently high rate. Modern tiled CPUs employ different
techniques in the cores to boost memory parallelism. At a mini-
mum, each CPU core can execute a single thread capable of issuing
one memory request at a time. So, assuming a tiled CPU with C
cores, we can sustain C-way memory parallelism. Higher memory
parallelism is possible if the cores can either issue multiple mem-
ory instructions from each thread (superscalar) or switch between
hardware-managed threads to issue multiple memory requests in
an interleaved fashion (multi-threading). And, SIMD instruction
extensions can further boost memory parallelism. SIMD pipelines
have recently begun supporting scatter-gather, allowing each sub-
word from a single scatter-gather operation to generate a separate
memory request (i.e., to an arbitrary memory location). For example,
Intel’s AVX-512 ISA [7] has incorporated such flexible scatter-gather
instructions just in the past year.

In combination, all of these techniques can permit CPUs to sus-
tain a very large amount of memory parallelism. Assuming C = 64
cores, 4-way multi-threading, and 8-way SIMD with scatter-gather,
a total of 2Kmemory requests can be in flight simultaneously.While
this represents a significant amount of memory parallelism, it is ac-
tually not enough to utilize all of the ReRAM banks in a monolithic
computer. As mentioned earlier, we anticipate potentially having
10s of thousands of ReRAM banks. To more fully utilize the on-die
ReRAM, additional techniques within the cores may be necessary
to further boost memory parallelism.

One promising technique is non-blocking memory operations.
Normally, when a core misses in its cache and initiates a long-
latency main memory access, the thread running on the core stalls.
In contrast, non-blocking memory operations [8, 9] would allow
the thread to continue executing and reach additional memory
operations, thus boosting memory parallelism. Writes are easily
made non-blocking by adding a buffer to stage the stored data before
it is written to memory. Reads are more challenging to make non-
blocking since the memory operation doesn’t actually complete
until the read data returns from main memory. By adding presence
bits to the register file, or a scoreboard, the instructions that are
dependent upon a non-blocking load can be identified, allowing a
stall to occur when a dependent instruction tries to issue.

To our knowledge, such non-blocking loads and stores have been
applied to scalar memory operations only [8, 9]. We will investigate
their use in SIMD instructions, and in particular, for scatter-gather
operations. Because non-blocking SIMD memory operations are
orthogonal to the above techniques, they can be used in concert
with those previous techniques. Doing so will further increase the
memory parallelism by the number of outstanding non-blocking
scatter-gathers allowed. As with the NOC and MC designs, a major
consideration will be to achieve this parallelism without incurring
exhorbit area and/or power such that the entire CPU and its ReRAM
memory system can fit in a single die.

5 CONCLUSION
This paper considers the notion of a monolithic computer, a future
computer architecture in which a CPU and a high-capacity main
memory system are integrated in a single die. We believe such
computer chips will become possible in the near future due to
emerging ReRAM technology that can be integrated over CPU
logic within top-level metal layers of a VLSI process.

We identify several challenges that should be addressed in order
to realize such new architectures. First, the ReRAM’s access circuits
must be merged with the CPU’s logic. We presented a preliminary
physical design study using a simple VSCALE core from the Berke-
ley RISC-V architecture. In addition to the area overhead of the
access circuits (roughly 25%), we find the layout of the CPU core
increases by 11.3%. In the future, we hope to perform other similar
physical design studies, but with larger and more realistic CPUs.

Second, while the basic ReRAMmemory technology exists today
at Crossbar, the existing technology is targeted for storage devices.
An important challenge is to redesign Crossbar’s ReRAM technol-
ogy so that it is more suitable for use in CPU main memory. In
particular, trade offs should be made to sacrifice some retention in
order to improve access latency and endurance.

Memory-System Design Challenges in Realizing Monolithic Computers MEMSYS’18, October 2018, Washington, D.C. USA

Finally, the CPU architecture should be designed to effectively
exploit the massive memory-level parallelism that will potentially
be available in the on-die ReRAM. We propose to use a tiled CPU
as a starting point, but to integrate the memory controllers into the
compute tiles. A crucial part of the design is the NOC. Unfortunately,
the most common NOC topology, a 2D mesh, may incur significant
contention. It may be necessary to explore higher-dimensional
networks that can support greater messaging capacity. In addition
to the NOC, the memory controller design is crucial as well. An
important issue is the number of controllers that should be provided
relative to the number of cores. And, the CPU cores themselves
should be capable of sustaining a largememory request rate. Besides
multi-threading and wide SIMD scatter-gather memory operations,
we believe non-blocking SIMDmemory operations can help achieve
the desired levels of memory parallelism.

6 ACKNOWLEDGEMENT
This work was supported by the Department of Defense under
Contract FA8075-14-D-0002-0007, TAT 15-1158.

REFERENCES
[1] G. Loh, “3D-Stacked Memory Architectures for Multi-Core Processors,” Interna-

tional Symposium on Computer Architecture, 2008.
[2] Intel, “Intel Xeon Phi Product Family, http://www.intel.com/content/www/us/en/

processors/xeon/xeon-phi-detail.html,” no. http://www.intel.com/content/www/us/
en/processors/xeon/xeon-phi-detail.html, 2014.

[3] A. Agarwal, L. Bao, J. Brown, B. Edwards, M. Mattina, C.-C. Miao, C. Ramey, and
D. Wentzlaff, “Tile Processor: Embedded Multicore for Networking and Multime-
dia,” in Proceedings of the 19th Symposium on High Performance Chips, (Starford,
CA, USA), 2007.

[4] A. Waterman, Y. Lee, D. Patterson, and K. Asanovic, “The RISC-V Instruction
Set Manual, Volume I: Base User-Level ISA,” UCB/EECS 2011-62, University of
California, Berkeley, May 2011.

[5] “Rambus, http://www.rambus.com.” 2014.
[6] J. Jeddeloh and B. Keeth, “Hybrid Memory Cube New DRAM Architecture In-

creases Density and Performance,” in Proceedings of the 2012 Symposium on VLSI
Technology, (Honolulu, HI), June 2012.

[7] Intel, “AVX 512 Instruction Extensions, http://software.intel.com/en-
us/blogs/2013/avx-512-instructions.” 2017.

[8] K. I. Farkas, N. P. Jouppi, and P. Chow, “How Useful are Non-blocking Loads,
Stream Buffers, and Speculative Execution in Multiple Issue Processors?,” WRL
Research Report 94/8, Western Research Laboratory, December 1994.

[9] A. Rogers and K. Li, “Software Support for Speculative Loads,” in ASPLOS-V,
pp. 38–50, ACM, October 1992.

	Abstract
	1 Introduction
	1.1 CPU - Main Memory Integration

	2 Physical Design Challenge
	3 Device Challenge
	4 Architecture Challenge
	4.1 Network-On-Chip
	4.2 Memory Controller
	4.3 Cores

	5 Conclusion
	6 Acknowledgement
	References

