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ABSTRACT
The overhead of DRAM refresh is increasing with each density gen-
eration. To help o�set some of this overhead, JEDEC designed the
modern Auto-Refresh command with a highly optimized architec-
ture internal to the DRAM—an architecture that violates the timing
rules external controllers must observe and obey during normal
operation. Numerous refresh-reduction schemes manually refresh
the DRAM row-by-row, eliminating unnecessary refreshes to im-
prove both energy and performance of the DRAM. However, it has
been shown that modern Auto-Refresh is incompatible with these
schemes, that their manual refreshing of speci�ed rows through
explicit Activate and Precharge precludes them from exploiting the
architectural optimizations available internally for Auto-Refresh
operations.

This paper shows that various DRAM timing parameters, which
should be followed during normal DRAM operations can be reduced
for performing Refresh operation, and by reverse engineering those
internal timing parameters at system-init time an external memory
controller can use them in conjunction with individual Activate and
Precharge commands, thereby reducing the performance overhead
a�orded Auto-Refresh, while simultaneously supporting row-by-
row refresh reduction schemes.

Through physical experiments and measurement, we �nd that
our optimized scheme reduces tRFC by up to 45% compared to
the already highly-optimized Auto-Refresh mechanism. It is also
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10% more energy-e�cient and 50% more performance-e�cient
than the non-optimized row-by-row refresh. Further evaluations
done by simulating future 16 Gb DDR4 devices show how the
reduction in tRFC improves the application performance and energy
e�ciency. The proposed technique enhances all of the existing
refresh-optimization schemes that use row-by-row refresh, and it
does so without requiring any modi�cation to the DRAM or DRAM
protocol.
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1 INTRODUCTION
As shown in Figure 1, DRAM refresh is expensive in both time
and energy, and its overhead is getting worse: the costs grow lin-
early with capacity, which means exponentially with each density
generation [5, 27]. Modern JEDEC SDRAMs use a special Auto-
Refresh command that is opaque to the controller and that handles
all Refresh operations and timing internally. To help o�set some
of the increasing refresh overheads, JEDEC designed Auto-Refresh
with a highly optimized architecture internally—in particular, the
architecture violates the inter-operation timing rules that external
controllers must observe and obey during normal operation (e.g.,
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Figure 1: Impact of Refresh vs. Device Size [5, 27]

for bank Precharge, row Activate, and/or column Read/ Write opera-
tions). The DRAM can violate external timing parameters internally
because the internal mechanism refreshes numerous rows simul-
taneously (not just one at a time), there are no command/address
bus constrains, and because, during refresh, it is understood that,
unlike “normal” operation, a read or write operation will not follow
the (multi-row) Activate operation.

There exists a large body of research, developing schemes that
manually refresh the DRAM row-by-row, characterizing each row’s
ability to retain data and eliminating unnecessary Refresh opera-
tions on rows that can be refreshed less often. These schemes have
been shown to be extremely e�ective, and, because eliminating
refresh improves both energy and performance of the memory
system, this o�ers the potential for signi�cant gains in DRAM-
system e�ciency. However, these schemes are incompatible with
the modern Auto-Refresh mechanism: they need to operate on a
row-by-row basis, whereas Auto-Refresh operates on multiple rows
at once. In addition, Auto-Refresh cannot skip any row, whether
that row needs to be refreshed or not. Thus, the manual schemes
use explicit row-level Activate (ACT) and Precharge (PRE) commands
to refresh row-by-row, called Row Granular Refresh (RGR), and,
because of this, studies have shown that these refresh schemes are
unable to exploit the optimizations available internally through
the Auto-Refresh mechanism. Previous work has proposed mini-
mal alterations to the DRAM architecture and protocol, to allow
both row-granular control of Refresh operations and the use of the
internal optimizations. Previous work has also claimed it to be im-
possible to equal the performance and energy savings of optimized
Auto-Refresh by using individual ACT and PRE commands, i.e. RGR.
In this paper, we disprove this commonly held wisdom.

This paper shows that by reverse-engineering, at system initial-
ization time, the DRAM’s internal inter-operation timing param-
eters (which are otherwise opaque to the outside), an external
memory controller can both discover and exploit the optimized
timing used by Auto-Refresh. We show that an optimized refresh
controller can use this reverse-engineered timing data to schedule
individual row-level ACT and PRE commands, thereby achieving
the best of both worlds: the controller can obtain the same energy
and performance savings that the Auto-Refresh mechanism enjoys,
while simultaneously supporting legacy RGR refresh-reduction
schemes. By conducting physical experiments and taking physical
measurements on 4 Gb x16 DDR3 SDRAMs, using our FPGA-based
evaluation platform, we �nd that our optimized refresh-reduction

scheme is actually more performance-e�cient than the already
highly-optimized Auto-Refresh mechanism.

In this paper we propose an optimized RGR refresh technique
called Optimized Row Granular Refresh (ORGR), which can be imple-
mented inside the memory controller without making any changes
to the DRAM. In our invented technique we reduce four DRAM
timing parameters while performing refresh:

• the time between ACT and PRE commands to the same bank
(tRAS ),

• the time between two successive ACT commands (tRRD ),
and

• the Four-bank Activate Window (tFAW ).
• the the time for a PRE command to complete (tRP ).

Furthermore we present a new run-time reverse engineering
technique in order to �nd the reduced tRAS .

Table 1 shows the relevant DRAM timings and currents for this
paper. Soon after DRAM initialization and calibration, the memory
controller performs certain tests to �nd out the vendor-speci�c min-
imum values for the above-mentioned timing parameters. The re-
duced timings are used only when performing the optimized Refresh
operations, whereas we use the JEDEC-speci�ed inter-command
timings for all other operations (e.g., normal Read/Write operation).
We make a number of observations:

• tRRD and tFAW can be reduced for Refresh operation since
they are partially external and internal power network
constraints, in order to reduce the peak power when many
ranks perform a normal Read/Write operation in parallel,
and because a Read/Write operation which would normally
follow an Activate command will not be performed.

• Once we reduce tRRD for performing row-by-row refresh,
we hit the tRAS limit, which prevents activating another
row in the same bank. The parameter tRAS can be reduced,
since there is no voltage drop in the bitline, which usu-
ally happens due to Read/Write commands. Therefore, the
bitlines will restore faster.

• DRAM vendors use a built-in analog timer (the tmin
RAS timer),

which prevents precharging an already activated row be-
fore the minimum restoration time is over—this ensures
that the data is not disrupted by an early Precharge. This
counter is set to a much lower value than the JEDEC-
speci�ed tRAS . Therefore, the limit for reducing tRAS can
be set dynamically by �nding out the vendor speci�ed tmin

RAS
value.

We perform our advanced refresh technique on state-of-the-art
DDR3 SDRAMs, and we show, in terms of performance and energy,
the bene�ts of this technique compared to Auto-Refresh as well as
with RGR using the standard JEDEC-speci�ed timing (i.e., how it
behaves without our optimizations). Among other �ndings, our
measurements show that the optimized refresh-reduction scheme
improves the tRFC by up to 45% compared to Auto-Refresh, which
as mentioned is already highly optimized. We also estimate the
bene�ts of this technique for future DRAMs using our high-level
simulation framework. The proposed technique enhances all of the
existing refresh-optimization schemes that use RGR, and it does
so without requiring any modi�cation to the DRAM or DRAM
protocol.



Using Run-Time Reverse-Engineering to Optimize DRAM Refresh MEMSYS 2017, October 2–5, 2017, Alexandria, VA, USA

Ban
ks

Page Size

LWL
Sub Arrays

MWL

PSA

Local Datalines

CSL

Master Datalines

LWL

Transistor

Capacitor

LBL

LBL

Bank 0

Column Decoder & SSA

R
ow

 D
ec

od
er

Memory Arrays

Figure 2: DRAM Architecture

2 BACKGROUND
First, we explain the basic DRAM architecture and functionality, to
understand the limiting factors with respect to energy and band-
width. As depicted in Figure 2, a DRAM device is organized as a set
of memory banks (e.g. eight) that include memory arrays (e.g. two).
Each memory array has row and column decoders, master wordline
drivers and Secondary Sense Ampli�ers (SSA). Buses, bu�ers, control
signals, voltage regulators, charge pumps and other peripherals are
shared between the di�erent banks. The memory arrays are formed
in a hierarchical structure out of sub-arrays (SA) for e�cient wiring,
increased speed and reduced power consumption. Therefore, each
SA is equipped with Primary Sense Ampli�ers (PSA). A typical mem-
ory SA consists of e.g. 512 cells × 512 cells = 256Kb1. For instance,
a 64Mb DRAM bank is formed out of two memory arrays, where
each memory array consists of 8 × 16 = 128 SAs. A single memory
cell is built as a transistor capacitor pair where the data is stored in
the capacitor as a charge. The individual cells in each sub-array are
connected to Local Wordlines (LWL) and Local Bitlines (LBL). The
LBLs and LWLs are connected to global Master Bitlines (MBL) and
Master Wordlines (MWL), respectively, which span over the com-
plete memory array. To read data from the memory, a precharge
command is issued by the memory controler (PRE) to prepare the
LBLs to a halfway voltage level and an activate command (ACT)
is issued to drive the LWL high and transfer the charge between
the memory cells and the connected LBLs. The voltage di�erence
caused by this transfer of charge (data) is sensed by the PSAs, as
shown in Figure 3 (More information about the sensing process will
be given in Section 4). Then, read (RD) or write (WR) commands can
be sent to read or write speci�c columns of data from or to SSAs,
which are interacting with the I/Os. Once �nished, the wordlines
can be switched o�, the cell capacitors disconnected, and the LBLs
can be precharged again.

The combination of primary and secondary sense ampli�ers of
the memory arrays in one bank can be conceived as a row bu�er
that has usually a size ranging from 512 B to 8 KB (called DRAM
page size, see Figure 2). It acts like a small cache that stores the most
recently accessed row of the bank. The latency of a memory access
to a bank largely varies depending on the state of this row bu�er.
If a memory access targets the same row as the currently cached
row in the bu�er (called row hit), it results in a low latency and
low energy memory access. Whereas, if a memory access targets
a di�erent row as the current row in the bu�er (called row miss),
it results in higher latency and energy consumption: A precharge

1We use JEDEC’s notation for storage capacity: K = 210, M = 220, G = 230
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Figure 3: Sense Ampli�er Voltage Waveform [9, 17]

Table 1: Key Parameters for a DDR3-1600 Device [17, 31]

Name Explanation

tRCD Row to Column Delay: The time interval between row access and data ready at
PSAs, in other words: The time interval between ACT and RD on the same bank.

tRP Row Precharge: The time interval that it takes for a DRAM array to be precharged
(PRE) and prepared for another row access.

tRAS Row Access Strobe: The minimum active time for a row, in other words: The time
interval between row access command and data restoration in a DRAM array.

tRC Row Cycle: The fastest time to ACT and PRE the same row (tRC = tRAS + tRP ),
in other words: The time interval between accesses to di�erent rows in a bank.

tWR Write Recovery: The minimum time interval between the end of a WR burst and a
PRE command.

tFAW Four ActivateWindow: Only four ACT commands can be issued in this time window.
tRRD Row-to-Row Delay: The minimum time interval between two ACT commands to

di�erent banks.
tREF Refresh Period: The time period a DRAM cell must be refreshed (e.g. tREF =

64ms).
tREF I Refresh Interval: The time interval between two refresh commands (e.g. tREF I =

7.8 µs).
IDD5 Refresh Current: Measured during refresh operation, with REF commands issued

every tRFC .
VDD Supply Voltage

command (PRE) must be issued before the required row can be
loaded (ACT) from the DRAM array into the row bu�er. Accessing
activated rows in two di�erent banks has no penalty.

Furthermore, DRAM cells need to be refreshed periodically to
retain the data stored in the cell capacitors. As shown in Section 1,
the refresh overhead in terms of both, performance and energy, is
increasing with each density generation. This is clearly visible from
the increase in the JEDEC-speci�ed Auto-Refresh cycle time (tRFC )
for denser DRAMs. In the following we describe both, Auto-Refresh
and RGR.

2.1 Auto-Refresh in Modern DRAMs
A DRAM cell must be refreshed every refresh window tREF = 64ms
to retain the data stored in it, at normal temperature conditions.
Modern DRAMs are equipped with an Auto-Refresh (AREF) com-
mand to perform this operation. A single AREF command does not
refresh the entire DRAM at once, but it refreshes only a certain
number of rows in all banks, depending on the density of the DRAM



MEMSYS 2017, October 2–5, 2017, Alexandria, VA, USA Deepak M. Mathew, Éder F. Zulian, Ma�hias Jung et al.

AREFAREFAREFAREFAREF

Figure 4: Auto-Refresh Commands and Timings

device. Therefore, the memory controller has to issue AREF com-
mands at regular intervals, called Refresh Interval (tREF I ), to refresh
the whole DRAM in a 64ms Refresh Window tREF . Notionally, the
refresh interval can be calculated as

tREF I =
tREF · r

R
, (1)

where R is the total number of rows per bank and r the number of
rows that an AREF command refreshes per bank. However, for DDR3
DRAMs, this refresh interval is always �xed by JEDEC to 7.8 µs [30]
for all DRAM densities at normal operating temperatures, which
means that r is variable and grows with DRAM density. It can be
calculated as

r =

⌈
tREF I · R

tREF

⌉
. (2)

The number of refresh commands that have to be issued can be
calculated as

N =
R

r
. (3)

Figure 4 shows how the Refresh commands are issued in DDR3
DRAMs. In total, N = 8192 AREF commands must be issued in every
tREF window, in order to refresh the complete DRAM. The DRAM
internally refreshes one or multiple rows per bank (r ) in response
to an AREF command. An AREF command blocks the DRAM for
the Refresh Cycle Time (tRFC ) from performing other operations.
The duration of tRFC depends on r and it increases with the den-
sity of the DRAM. The increase in tRFC a�ects the overall system
performance as well as energy e�ciency.

There exists a large body of research developing schemes that
manually refresh the DRAM row-by-row, eliminating unnecessary
refreshes to improve both energy and performance of the DRAM.
In the following subsection we describe their operation.

2.2 Row Granular Refresh
While it is not speci�ed how DRAM vendors perform the Refresh
operation internally, it is an open secret that an internal Refresh
operation is a sequence of ACT and PRE operations done in parallel
on a set of banks (e.g. bank groups). An external DRAM controller
can perform the similar operations to speci�c rows and banks to
mimic the internal DRAM Auto-Refresh. Figure 5 shows such a RGR
operation for a 2 Gb x16 DDR3 device. The device has B = 8 banks
and R = 214 rows in total. Therefore, r = 2 rows in all banks have
to be refreshed in every tREF I = 7.8 µs to refresh the entire DRAM
in a tREF = 64ms refresh window. The memory controller has to

 = 6 ns

ACTPREA PREBank0 ACT PRE

PREA ACT PREBank1 ACT PRE

PREA ACT PREBank2 ACT PRE

PREA ACT PREBank3 ACT PRE

PREA ACT PREBank4 ACT PRE

PREA ACT PREBank5 ACT PRE

PREA ACT PREBank6 ACT PRE

PREA ACT PREBank7 ACT PRE

58

Figure 5: Example forRGRwith 2Gbit x16DDR3Devicewith
r = 2 and B = 8

follow all the JEDEC speci�ed timings: tRRD , tFAW , tRAS and tRP .
Since this technique follows the strict timings for tRRD and tRAS ,
each Refresh operation will take

tRFC = (r · B − 1) · tRRD + tRAS + tRP

+

(
r ·

B

4
− 1
)
· twait

+ (r − 1) · [tRAS + tRP − (B · tRRD + twait )]≥0 ,

(4)

where twait = [tFAW − 4 · tRRD ]≥0 and [·]≥0 = max{·, 0}. The
last two summands of the formula can be viewed as the time the
DRAM controller has to wait in order not to violate the timing
constraints: The second summand takes care to wait for tFAW
if tFAW > 4 · tRRD and the third summand ensures to wait for
tRAS + tRP whenever it is larger than B · tRRD + twait . For the
DDR3 scenario in Figure 5, the DRAM is blocked for performing
other operations for tRFC = 158 ns (and additionally the time for
the required PREA if needed), which reduces the performance and
energy e�ciency of the overall system. Our proposed ORGR uses
reduced timings to perform the Refresh operations parallel in all
banks thereby reducing the tRFC . This technique is explained in
Section 4.

3 RELATEDWORK
Here we present the related work. For a detailed survey on today’s
refresh techniques we refer to [5].

3.1 Shortening DRAM timing Parameters
The characteristic parameters of DRAMs, such as timings (e.g. tRAS )
and currents (IDDX ), listed in datasheets are very pessimistic due
to the high process margins added by the vendors to ensure cor-
rect functionality under worst-case conditions and a high-enough
yield [8, 9]. Chandrasekar et al. [8] present a post-manufacturing
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performance characterization methodology that identi�es this ex-
cess in process-margins for any given DRAM device at runtime.
This information can be used in order to optimize the access la-
tencies. Similarly, [24] and [11] show mechanisms that adaptively
reduce the important timing parameters (tRCD , tRAS , tWR and tRP ).
The authors of [40, 41] perform detailed circuit simulations and
show that recently refreshed rows have more charge and therefore
they can access the recently refreshed rows with reduced tRAS .
In the works of [50, 51], the write recovery time tWR is reduced
in order to gain more performance. Similarly, the tWR is reduced
in [49] by jeopardizing data reliability.

3.2 Selective Refresh
Several selective refresh techniques have been proposed in the last
years. PARIS [3], DTail [13] and ESKIMO [16] exclude rows that do
not store useful data from being refreshed. Smart Refresh [14] re-
freshes only rows that have not been accessed recently.CREAM [48],
[39] and [12] show per-bank and per-subarray refresh techniques.
The authors of [36] issue refresh commands according to the stored
data values. Flexible Auto-Refresh [7] shows that DRAMAuto-Refresh
is highly optimized and RGR cannot be as e�ective as Auto-Refresh,
even if 70% of the rows are skipped. Therefore the authors presented
a realistic implementation of a �exible and row selective refresh,
which requires only small changes to the DRAM and its controller.

3.3 Refresh Scheduling
The idea of postponing DRAM refresh into self-refresh phases is
presented in [6]. The authors of [33] show how to use JEDEC’s
DDR4 �ne granularity refresh (FGR) e�ciently, while [43] presents
an enhancement (EFGR). In [42], Elastic Refresh, an approach that
adapts the refresh behavior according to the current workload is
shown. Refresh Pausing [34] is a technique that allows to pause
a current Refresh operation to serve a DRAM access. To make re-
fresh predictable for real-time application it can be triggered from
software level, as shown in [4].

3.4 Retention Aware Refresh
There are several works on retention aware refresh, that also try
to reduce the number of refresh events by maintainig data in-
tegrity [3, 25, 27, 44, 45, 52]. These techniques can be applied in
�elds of non-resilient applications. The authors of [15] increase the
refresh period and refresh weak cells with dedicated ACT and PRE
commands. The CLARA scheme [2] proposes a circular linked-list
based refresh architecture for improving auto- and self-refresh. The
DRAM device must be modi�ed, and it also requires a character-
ization of weak cells at system initialization. However, it is very
di�cult to characterize DRAMs, as they experience Variable Reten-
tion Times (VRTs) and Data Pattern Dependencies (DPD) [26, 46] for
their retention times. Moreover, in [46] it is shown that the tem-
perature has a strong e�ect on VRT. Hence, it is infeasible during
startup of a system to determine an exact list of weak cells that
considers all parameters, such as temperature, retention time and
DPD. AVATAR [37], tries to overcome VRT issues by combining an
online Error-Correcting Code (ECC) mechanism with row selective
refresh.

3.5 Approximate DRAM
Recently, Approximate DRAM [19, 20] is discussed to lower the
in�uence of DRAM refresh. Liu et al. presented the �rst work on
Approximate DRAM, called Flikker [28], which reduces the number
of refreshes by partitioning a DRAM bank in a critical and non-
critical region. The non-critical region will be refreshed with a lower
refresh rate. A similar approach is followed by [38] called Quality
Aware Approximate DRAM, which characterizes the used DRAM
by extensive retention time measurements. As a result the DRAM
pages are sorted into quality bins. During allocation critical data is
stored in high quality bins, whereas approximate data is allocated
in low quality bins. The whole DRAM is then refreshed with the
same refresh rate, which makes this approach applicable to today’s
DRAM devices, since no changes of the internal DRAM structure
are required. However, this approach is very time consuming due to
the prior characterization and characterization is very challenging
because of the VRT phenomenon. Moreover, there is an overhead to
store the essential information to apply this technique (sorted page
order). The REVA [1] refresh scheme can be used in dedicated video
applications. It refreshes only the important region of interest (ROI)
in a video frame. Sparkk [29] proposes the idea of permutation
of the data bits on several DRAM chips that are refreshed with
di�erent rates. The most signi�cant bits of a byte are located in
a highly refreshed DRAM device and the least signi�cant bits are
stored in a less refreshed chip. Omitting Refresh (OR) [23] shows
that for dedicated applications refresh can be disabled completely
without or with negligible impact on the application performance.
This is possible if it is assured that either the lifetime of the data
is shorter than the currently required DRAM refresh period or if
the application is error resilient and can tolerate bit errors to some
degree in a given time window.

In contrast to prior works [7], [12], [13], [36], [39], [48], our
proposed technique does not require any modi�cation to the DRAM.
All of the previous research which uses RGR bene�ts directly from
our technique. Furthermore, our method can be easily integrated to
any DRAM controller and in any computing devices, performing a
start-up calibration to obtain the minimum timings for the DRAM
device used.

4 OPTIMIZED ROW GRANULAR REFRESH
In our proposed Optimized Row Granular Refresh (ORGR), we do
a holistic optimization of the RGR by reducing multiple DRAM
timing parameters: tRRD , tRAS , tRP , and ignoring tFAW (by setting
it to tFAW = 4 · tRRD ). We de�ne the new timing parameters as
t∗RRD , t∗RAS and t∗RP . The values of tRRD and tFAW can be reduced
for Refresh operation since they are partially external and internal
power network constraints. They serve to reduce the peak power
when many ranks perform a normal Read/Write operation in paral-
lel, and they are unnecessary here because a Read/Write operation,
which would normally follow an Activate operation, will not be
performed. We used a similar approach like showed in [11] for
determining t∗RP . The justi�cation for t∗RAS is explained below.

The sensing scheme for a normal Read operation is shown in
Figure 3. The ACT command triggers the Local Wordline (LWL)
drivers and they raise LWL to a voltage above VDD +Vth . Bitlines
develop a small charge, which is ampli�ed by the Primary Sense
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Figure 6: Sense Ampli�er Voltage Waveform for ORGR

Ampli�ers (PSA) to VDD . When the bitline voltage is raised to
approximately 92% of the VDD , a RD command is issued and the
Column Select Line (CSL) is raised. This will create a drop in the
bitline voltage until the CSL is lowered, increasing the restoration
time, which is re�ected in the tRAS speci�ed by JEDEC. But, in case
of a RGR, a RD does not follow an ACT, and therefore there is no
voltage drop in the bitline, shown in Figure 6. This enables the fast
restoration of bitlines, and therefore tRAS can be reduced.

Thus, in ORGR we perform row granular refresh using reduced
timings as shown in Figure 7. We use the reduced timing param-
eters t∗RRD = 3.75 ns, t∗RAS = 20.625 ns and t∗RP = 9.375 ns. The
time to perform a single Refresh using this method can be also cal-
culated using Equation 4. With our reduced timings, we achieved
45% savings in t∗RFC compared to non-optimized RGR.

Later, in Section 6, we validate by physical measurements that
the reduction of timing parameters does not hurt the data stored in
the DRAM, by varying the refresh rate and measuring the number
of bit �ips in actual DRAMs. The method to �nd the minimum tRAS
value, tmin

RAS is described in the following subsection.

4.1 Determination of Minimum Timings
Since tRAS is the key parameter in our optimization strategy— vi-
olation of which will cause bit �ips inside the DRAM—we have
invented a method to �nd the minimum possible value of tRAS :
tmin
RAS , using reverse-engineering at run-time. We used the hardware

platform described in Section 5 to perform the reverse-engineering.
Figure 8 depicts the general reverse-engineering technique. We
initially issue an ACT command, followed by a PRE command after
tRAS to the same bank: e.g Bank7 in the example in Fig. 8. The RD
command which comes tRP after PRE will be ignored by the DRAM
since Bank7 is already precharged, and therefore the DRAM will
not drive the data and the data strobe (DQS) in response, and thus the
DQS will not be present on the bus. Then we gradually reduce the
tRAS by moving PRE closer to the ACT until the presence of DQS is
detected by our experimental setup in response to the RD command,
which indicates that the DRAM detects a correctly timed RD com-
mand, thereby con�rming the value of the tmin

RAS counter inside the
DRAM. When the PRE comes within the tmin

RAS , the DRAM ignores

ACT PREBank0 ACT PREPRE

ACTBank1 ACTPRE PREPRE

ACTBank2 ACTPRE PREPRE

ACTBank3 ACTPRE PREPRE

ACTBank4 ACTPRE PREPRE

ACTBank5 ACTPRE PREPRE

ACTBank6 ACTPRE PREPRE

ACTBank7 ACTPRE PREPRE

45% Savings

Figure 7: Example for ORGR with 2Gbit x16 DDR3 Device
with r = 2 and B = 8

Command

DQS

ACT PRE RD
Bank7 Bank7 Bank7

Figure 8: Determination of tmin
RAS

the precharge to prevent data restoration failure, and therefore
the RD command which comes later will Read from the previously
activated bank. Similarly we �nd the minimum tRAS for di�erent
vendors. We utilize the pessimistic guard band set by the vendors
for minimizing tRP , and use similar techniques to �nd tmin

RP . We
run these test-sets for tmin

RAS calibration from our controller soon
after the DRAM initialization and calibration step is �nished. Based
on the detected tmin

RAS value, our controller decides the t∗RAS for
performing ORGR. Note that the vendor’s internal counter already
takes process variation e�ects into account. To account for any tem-
perature variations, and to make our technique more reliable, we
can also perform this calibration step at any time during the normal
DRAM maintenance operations: e.g. along with ZQ calibration.

In the following section we will explain the experimental plat-
form that we have used for validating our technique
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Table 2: Measurement Results

f Refresh Type t
(∗)
RAS [ns] t

(∗)
RRD [ns] t

(∗)
RP [ns] t

(∗)
RFC [ns] t

(∗)
RFC/tREF I IDD5 [mA] Power [W] Energy [nJ]

40
0M

H
z Auto Refresh % % % 260 3.33% 468 0.702 182.52

RGR 62.5 10 17.5 390 5.00% 407 0.6105 238.10

ORGR 27.5 5 12.5 195 2.50% 742 1.113 217.03

53
3M

H
z Auto Refresh % % % 262.5 3.37% 473 0.7095 186.24

RGR 46.875 7.5 13.125 292.5 3.75% 525.3 0.78795 230.48

ORGR 20.625 3.75 9.375 146.25 1.88% 956 1.434 209.72

Shunt Resistor

Pel�er Elements

DRAM
SO-DIMM

Temp.
Sensor

I2C for SPD

Analog
Signal

Figure 9: Measurement Platform

5 EXPERIMENTAL SETUP
To validate our technique at higher temperatures, and to conduct
accurate current measurements, a precise and reliable measurement
platform had to be chosen. FPGA rail power measurements will not
give reliable results due to the signi�cant noise involved. Therefore,
we developed a custom platform [18] shown in Figure 9 to measure
the current consumption and to heat up the DRAM devices of DDR3
SO-DIMM modules. The heating section consists of a mechanical
setup, which is placed on the surface of the DRAM devices. For
analyzing the current consumption of DRAMs, we designed an
adapter PCB for DDR3 SO-DIMMs (6 Layers) that conforms to
JEDEC standard requirements. The DDR3 SO-DIMM adapter board
is plugged into a Xilinx FPGA based evaluation platform. A digital
precision multimeter from Keithley was used for measuring SO-
DIMM adapter board current. The state-of-the-art Memory Interface
Generator (MIG) memory controller from Xilinx [32] is customized
to generate the required command and data sequences for the
measurements. A Virtual Input/Output (VIO) core connected to the
Custom MIG enables to control of the internal FPGA signals. For
real-time monitoring of the signals we used Vivado Logic Analyzer.

In the following section we present the results that we have
measured using our measurement platform.

6 EXPERIMENTAL RESULTS
To verify that ORGR works for state-of-the-art DRAMs, we per-
formed retention tests on a 2 GB DDR3 SO-DIMM (each SO-DIMM
containing four 4 Gb, x16 devices at 30 nm technology node from
Vendor-X ). We �lled the entire DIMM (all of the DRAMs) with a
speci�c data pattern (0xFF ) and then we performed ORGR with

varying tREF from 1 s to 100 s. Afterward we read the entire DIMM
and measured the number of bit �ips. Each measurement was taken
10 times. Figure 10a and Figure 10b show the average for the cu-
mulative failure probability for 40°C and 90°C for various retention
times. The results shows that our proposed technique using re-
duced timings outperforms Auto-Refresh at lower temperatures and
performs well even at 90°C.

We measured the IDD5 for the same SO-DIMM from Vendor-
X using the platform discussed in Section 5 to obtain the power
and energy values. Table 2 shows a comparison of the measured
IDD5 values for ORGR with RGR and Auto-Refresh at 400MHz and
533MHz. The DRAM timing values shown in Table 2 for RGR are
following the best possible schedule, and we ensured that they
never violate the JEDEC-speci�ed minimum values: tRRD = 6 ns,
tRAS = 35 ns and tRP = 12.5 ns. For ORGR we used the previously
estimated reduced DRAM timings.

The results show that as we reduce the timings as we propose
in our technique, the energy e�ciency is also increased and ap-
proaches that of Auto-Refresh. The results also show that the per-
formance of ORGR exceeds that of Auto-Refresh by up to 45% and is
around 10% more energy e�cient compared to RGR. We have also
determined tmin

RAS for di�erent vendors: for Vendor-X it is 18.75 ns
and for other vendors it varies from 20.325 ns to 24.375 ns.

7 SIMULATION RESULTS
To estimate the bene�ts of ORGR for future high density DRAM
devices, which do not exist yet, we evaluated our technique for
an 8 GB DDR4 SO-DIMM consisting of four 16 Gb DDR4 devices.
The DRAM speci�cations shown in Table 3 were generated using
the open source DRAM current and timing generator tool DRAM-
Spec [35, 47]. We executed two di�erent applications: one with a
dense memory access pattern, and the other with a sparse memory
access pattern. We use the design space exploration framework
DRAMSys [21, 22] and DRAMPower [10], to evaluate the perfor-
mance and energy for Auto-Refresh, RGR, and ORGR. The Average
Response Latency (ARL) is used as the performance evaluation met-
ric for both the applications.

We evaluated six di�erent cases (No Refresh, Auto-Refresh, RGR,
ORGR, RGR selective, ORGR selective) each for the three di�erent
DDR4 Fine Granular Refresh (FGR) modes, shown in Figure 11. For
the selective refresh case only half of the DRAM is refreshed, since
the applications use only 50 percent of the total memory space. In
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Figure 10: Retention Error Behaviour
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Figure 11: Simulation Results for DDR4

contrast to RGR and ORGR, the Auto-Refresh does not provide the
�exibility to selectively refresh the DRAM by its nature.

ORGR outperforms Auto-Refresh and RGR in terms of ARL for
all the cases that we have evaluated. Moreover, for the case where
only half the DRAM is refreshed (selective refresh), ORGR is also
considerably more energy e�cient than Auto-Refresh by exploiting
�exibility, and it is slightly more energy e�cient than RGR.

8 CONCLUSION
In this paper we presented a novel technique to optimize Row Gran-
ular Refresh using reduced DRAM timings. We have also invented
a method to determine the minimum tRAS timing for di�erent ven-
dors by reverse-engineering the DRAM during initialization, and
�nding out the internal counter value set by vendors. With the
use of these reverse engineered timing parameters to optimize the
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Table 3: Speci�cations for 16 Gb DDR4 Device

Parameter Auto-Ref RGR ORGR

tRP 15 ns 15 ns 12.5 ns

tRAS 28.3 ns 28.3 ns 18.3 ns

tFAW 30.8 ns 30.8 ns 6.6 ns

tRRD 6.7 ns 6.7 ns 1.7 ns

tREF 64ms 64ms 64ms

t 1XREF I 7.8 µs 7.8 µs 7.8 µs

t 2XREF I 3.9 µs 3.9 µs 3.9 µs

t 4XREF I 1.95 µs 1.95 µs 1.95 µs

t 1XRFC 560.6 ns 1018.2 ns 504.7 ns

t 2XRFC 350.6 ns 525.4 ns 258.3 ns

t 4XRFC 260.7 ns 279 ns 135.1 ns

I 1XDD5 500mA % %

I 2XDD5 361.5mA % %

I 4XDD5 306.5mA % %

IDD0 52.6mA 52.6mA 52.6mA

Row Granular Refresh we achieve more performance and energy
e�ciency. We implemented our Optimized Row Granular Refresh
technique and the required reverse engineering method inside a
state-of-the-art memory controller and demonstrated the function-
ality on an FPGA based evaluation platform. Experimental evalua-
tions show that our optimized technique outperforms Auto-Refresh
by up to 45% in terms of tRFC , and is approximately 10% more
energy e�cient compared to the non-optimized Row Granular Re-
fresh. Furthermore, we have evaluated the bene�ts of our technique
for future 16 Gb DDR4 SDRAMs using simulations. The simula-
tion results show that our optimized technique performs much
better than Auto-Refresh and Row Granular Refresh, and is more
energy e�cient than Auto-Refresh when the DRAM is only partially
refreshed. The proposed technique can be applied to all of the ex-
isting refresh-optimization schemes that use row-by-row refresh,
especially for future high density DRAMs, and it does so without
requiring any modi�cation to the DRAM or DRAM protocol. We
assume that these reduced timings are used by the DRAM vendors
for performing the Auto-Refresh since it is otherwise not possible
to complete the Refresh operation within the speci�ed tRFC .
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