ENES 100

Bruce Jacob

SLIDE 1

Sensing, Actuation, Control ENES 100

Prof. Bruce Jacob Electrical & Computer Engineering (with enormous thanks to Prof. Bill Levine)

OUTLINE:

- Some example control systems
- Feedback: Open loop vs. closed loop (PID control)
- Simple hovercraft circuits
- Hovercraft control issues

ENES 100

Bruce Jacob

SLIDE 2

The Toilet

- Sensor: float
- Actuator: valve
- Power: water level
- Failsafe: overflow tube
- 2000 year old control system
- System not used for present purpose until 19th century (cholera epidemics)

- 2000 year old control system
- System not used for present purpose until 19th century (cholera epidemics)

ENES 100

Bruce Jacob

SLIDE 4

Power Brakes (e.g. disk)

- Manual activation
- Separate hydraulic networks (per brake or per opposite pair)
- Additional failsafe (optional): power needed to hold brake open (fails closed)

Power Brakes (e.g. disk)

- Manual activation
- Separate hydraulic networks (per brake or per opposite pair)
- Additional failsafe (optional): power needed to hold brake open (fails closed)

SENSORS & CONTROL

ENES 100

Bruce Jacob

ENES 100

Bruce Jacob

SLIDE 6

Antilock Brakes

© 2005 Microchip Technology Incorporated. All Fights Reserved

- Sensor: wheel speed
- Actuator: pulse emitter
- Power: hydraulic
- Failsafe: manual, sensors
- Each wheel monitored separately for significant deviation in wheel speed
- Each wheel controlled/pulsed separately
- Problem: contaminated sensors
- Add'l sensors: wheel angle & gyroscope

- Each wheel monitored separately for significant deviation in wheel speed
- Each wheel controlled/pulsed separately
- Problem: contaminated sensors
- Add'l sensors: wheel angle & gyroscope

ENES 100

Bruce Jacob

SLIDE 8

Fletched Arrow

- Sensor: fletching
- Actuator: fletching
- Power: pressure
- Failsafe: n/a
- Bare shaft: completely unstable
- Weighted tip: slightly more stable
- Fletching acts as control mechanism (correction proportional to deviation)

 Plug/spring acts as control mechanism (correction proportional to deviation: higher pressure => valve opens more)

SENSORS & CONTROL

ENES 100

Bruce Jacob

Steam Valve

• Sensor: spring-loaded piston

- Actuator: valve
- Power: (steam) pressure
- Failsafe: backup/none
- Plug/spring acts as control mechanism (correction proportional to deviation: higher pressure => valve opens more)

SENSORS & CONTROL

ENES 100

Bruce Jacob

Centrifugal Governor

SENSORS & CONTROL

ENES 100

Bruce Jacob

Centrifugal Governor

Bruce Jacob

ENES 100

SENSORS & CONTROL

SLIDE 13

Sensor: centrifugal pendulum

- Actuator: valve
- Power: torque on shaft
- Failsafe: backup/none

- Also called the "flyball" governor
- Proportional control: the faster the rotation, the more the valve closes
- On nearly every steam engine made

ENES 100

Bruce Jacob

SLIDE 14

Feedback Control

OPEN LOOP

ENES 100

Bruce Jacob

SLIDE 15

Power Brakes

OPEN LOOP

ENES 100

Bruce Jacob

SLIDE 16

Anti-Lock Brakes

CLOSED LOOP

ENES 100

Bruce Jacob

SLIDE 17

Power-Assist Steering

OPEN LOOP

ENES 100

Bruce Jacob

SLIDE 18

Compass-Assisted Steering

CLOSED LOOP

SENSORS & CONTROL **Manual Throttle ENES 100** Bruce Jacob **OPEN LOOP** SLIDE 19 Input **System** Controller Plant to Output **System** Software/Hardware **Thing being Controlled** Set Engine Engine Open Speeds Up (Slows Down) Throttle or **Close** Fuel Valve Line

ENES 100

Bruce Jacob

SLIDE 20

Governor-Controlled Throttle

CLOSED LOOP

ENES 100

Bruce Jacob

SLIDE 21

Hovercraft A

OPEN LOOP

$$u(t) = K_{P}e(t) + K_{I}\int_{0}^{t}e(t)dt + K_{D}\frac{de}{dt}$$

- Proportional term ensures the system reacts as soon as there is a change in the system: change in new output follows the error.
- Integral term provides hysteresis, tracks effectiveness of control system: measures delta between output and input to date.
- **Derivative** term anticipates future behavior: reacts to quick changes in plant output vs. input.

Example System

Thermostat — A Popular Controls Example

- Water heater: controlled by voltage
- Sensor: temperature (V representing T)

SENSORS & CONTROL

ENES 100

Bruce Jacob

ENES 100

Bruce Jacob

SLIDE 25

Example System

Thermostat — A Popular Controls Example

Proportional Controller

```
while (1)
```

```
error = desired() - reading();
```

increase_temp(error * pGain);

SENSORS & CONTROL

ENES 100

Bruce Jacob

Integral Controller

```
while (1)
cum_E += [desired() - reading()];
cum_E = bound_cumulative_error( cum_E );
increase_temp( cum_E * iGain );
```


SENSORS & CONTROL

ENES 100

Bruce Jacob

PI Controller

SENSORS & CONTROL

ENES 100

Bruce Jacob

PID Controller (predictive)

SENSORS & CONTROL

ENES 100

Bruce Jacob

Two VERY DIFFERENT things:

- trip voltage (to power electromagnet)
- max current (through switch)

ENES 100

Bruce Jacob

Circuits: Reversing Fans

Bruce Jacob

ENES 100

SENSORS & CONTROL

ENES 100

Bruce Jacob

SLIDE 33

Hovercraft Control Issues

Issues you will have to address:

- Sensing location
- Sensing speed/direction
- Changing location/speed/direction
- Making informed decisions

Sensing Location

SENSORS & CONTROL

ENES 100

Bruce Jacob

- Echolocation (distance from walls)?
- Dark/light sensor (following tape)?
- Magnetic sensor (following tape)?
- GPS (absolute coordinates)?

Sensing Speed/Direction

ENES 100

Bruce Jacob

- Is following tape/walls sufficient?
- What about angular momentum?

Changing Orientation

Turning is obvious ... or is it?

How do you *stop* turning?

Forward thrust is obvious ... or is it?

Are your fans perfect?

CONTROL ENES 100

SENSORS &

Bruce Jacob

Some Things to Think About

Which is likely to be easiest?

SENSORS & CONTROL

ENES 100

Bruce Jacob

Some Things to Think About

How do you tell the difference?

SENSORS & CONTROL

ENES 100

Bruce Jacob

NXT vs. RCX: sensor inputs

4 inputs vs. 3 — RCX has 3 inputs:

SENSORS & CONTROL

ENES 100

Bruce Jacob

NXT vs. RCX: sensor inputs

4 inputs vs. 3 — NXT has 4:

SENSORS & CONTROL

ENES 100

Bruce Jacob

ENES 100

Bruce Jacob

SLIDE 43

Bottom Line

The control problem will be your biggest headache when designing your hovercraft.

Give it a lot of thought.